
 

 

 

LEVERAGING BIG DATA FOR MANAGING TRANSPORT OPERATIONS 

 

 

Deliverable 1.3   Big Data Methodologies, Tools and Infrastructures 

 

Kim Hee1, Todor Ivanov1, Roberto V. Zicari1, Rut Waldenfels1, Hevin Özmen1,  
Naveed Mushtaq1, Minsung Hong2, Tharsis Teoh3, Rajendra Akerkar2 

Goethe-University Frankfurt1,  
Western Norway Research Institute2,  

Panteia B.V.3 

 

July 2018 

 

Work Package 1 

 

 

Project Coordinator 

Prof.  Dr. Rajendra Akerkar (Western Norway Research Institute) 

 

Horizon 2020 Research and Innovation Programme  

MG-8-2-2017 - Big data in Transport: Research opportunities, challenges and limitations 

 



            D1.3: Big Data Methodologies, Tools and Infrastructures, P 

 

I 

 

Distribution level Public (P) 

Due date 30/06/2018 (M8) 

Sent to coordinator 10/07/2018 

No. of document D1.3 

Title Big Data Methodologies, Tools and Infrastructures 

Status & Version Final 

Work Package 1: Setting the stage on big data in transport 

Related Deliverables D1.1 

Leading Partner Goethe-University Frankfurt 

Leading Authors Kim Hee, GUF (Chapter 1, 2, 4, 6) 

Todor Ivanov, GUF (Chapter 1, 3, 5, 6) 

Roberto V. Zicari, GUF (Chapter 1, 7) 

Rut Waldenfels, GUF (Chapter 2) 

Contributors Naveed Mushtaq, GUF 

Hevin Özmen, GUF 

Minsung Hong, WNRI 

Tharsis Teoh, Panteia 

Rajendra Akerkar, WNRI 

Reviewers Gerben Zwart, Panteia 

Keywords Big Data, Transportation, Technologies, Benchmark 

 

Disclaimer: 

This report is part of the LeMO project which has received funding by the European Union’s 
Horizon 2020 research and innovation programme under grant agreement number 770038. 

The content of this report reflects only the authors’ view. The European Commission and 
Innovation and Networks Executive Agency (INEA) are not responsible for any use that may 
be made of the information it contains. 

  



            D1.3: Big Data Methodologies, Tools and Infrastructures, P 

 

II 

 

Executive summary 

Big Data opens up new opportunities to define “Intelligent” mobility and transportation 
solutions. The transportation industry is a leader in creating the so-called Internet of Everything. 
Each day vast volumes of data are generated through sensors in passenger counting and vehicle 
locator systems and ticketing and fare collection systems, just to name a few.  

The goal is to create value out of this amount of data, by providing a comprehensive picture of 
what’s happening, using business analytics, leveraging big data tools and predictive analytics, 
to help transportation agencies improve operations, reduce costs and hopefully better serve 
travelers.  

The technical challenge is that much of this Big Data is non-standard data (e.g., social, geospatial 
or sensor-generated data that does not an easy fit into traditional, structured, relational data 
warehouses or databases).  

An additional challenge is that with such an amount of real-time structured and unstructured 
data captured from a variety of sources, it is difficult to determine which data is most valuable. 
Terabytes of data are collected and result in an added complexity to the underlying IT 
infrastructures.  

These terabytes of data require immense amounts of storage in silo after silo of transportation 
operator data centers. In order to analyze Big Data, an appropriate Data Infrastructure needs 
to be in place to: 

1. store and maintain data 
2. analyze data 
3. present results in a clear visual way 

Several Big Data platforms have been proposed recently, open source and proprietary. In order 
to tackle the demands and challenges in the transportation domain, an optimal stack of Big Data 
technologies needs to be selected and designed based on the application requirements.  

This is not an easy task.  

This report, which is a follow up of Deliverable 1.1, offers an in-depth introduction to relevant 
technologies for Big Data Analytics and Big Data Management. It also looks at how these 
technologies are applied to build a Big Data Platform suitable for the transport sector. We 
present in detail how application-specific benchmarking can be used in order to evaluate which 
Big Data technologies are most suited for the domain. We conclude the report with an applied 
example of using data analytics for urban mobility. 

This document offers the reader a technical insight into existing Big Data technologies at various 
levels: software management, data platform, and application. In order to evaluate which 
specific software components in the Big Data stack are more suitable for transport applications, 
with high volume and high-velocity requirements, a benchmarking approach is presented.  

The future of data analytics in transportation has many applications and opportunities.  

The main challenge is using significantly improved technologies and methods to gather and 
understand the data in order for business decisions to be informed by better insights. 
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1 Introduction 

1.1 Abstract 

Big Data opens up new opportunities to define “Intelligent” mobility and transportation 
solutions. The transportation industry is a leader in creating the so-called Internet of 
Everything. Each day vast volumes of data are generated through sensors in passenger 
counting and vehicle locator systems and ticketing and fare collection systems, just to name a 
few.  

The goal is to create value out of this amount of data, by providing a comprehensive picture 
of what’s happening, using business analytics, leveraging big data tools and predictive 
analytics, to help transportation agencies improve operations, reduce costs and hopefully 
better serve travelers.  

The technical challenge is that much of this Big Data is non-standard data (e.g., social, 
geospatial or sensor-generated data that does not an easy fit into traditional, structured, 
relational data warehouses or databases).  

An additional challenge is that with such an amount of real-time structured and unstructured 
data captured from a variety of sources, it is difficult to determine which data is most valuable. 
Terabytes of data are collected and result in an added complexity to the underlying IT 
infrastructures.  

These terabytes of data require immense amounts of storage in silo after silo of transportation 
operator data centers. In order to analyse Big Data, an appropriate Data Infrastructure needs 
to be in place to: 

4. store and maintain data 
5. analyse data 
6. present results in a clear visual way 

Several Big Data platforms have been proposed recently, open source and proprietary. In 
order to tackle the demands and challenges in the transportation domain, an optimal stack of 
Big Data technologies needs to be selected and designed based on the application 
requirements.  

This is not an easy task.  

This report, which is a follow up of Deliverable 1.1, offers an in-depth introduction to relevant 
technologies for Big Data Analytics and Big Data Management. It also looks at how these 
technologies are applied to build a Big Data Platform suitable for the transport sector. We 
present in detail how application-specific benchmarking can be used in order to evaluate 
which Big Data technologies are most suited for the domain. We conclude the report with an 
applied example of using data analytics for urban mobility. 

1.2 Purpose of the document 

The objective of this deliverable is to help to understand and choosing the right Big Data 
Technologies for transportation. The data flow in the transport sector comprises three 
components, namely: data generators, Big Data platform, and applications. Figure 1 depicts 
the abstract view of the data flow from data generators to applications. LeMO Deliverable 1.1 
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(Hee et al., 2018) defines data generators and applications, while the “Big Data platform” has 
remained a black box until now.  

Emerging Big Data approaches such as Kafka and Spark are defined for building a system that 
supports real-time processing and analysis. The successful technology stack is only determined 
based on a strong understanding of the application requirements and the Big Data Vs (four 
challenges introduced in D1.1: volume, velocity, variety, and veracity).  

 

 

Figure 1: Data flow from the data generators to applications in the transport sector 

 

In the following chapters, this report addresses each challenge step by step. Chapter 2 
introduces Big Data analytics and Big Data methodology. Analytics in the transport sector is 
also investigated. Chapter 3 surveys state-of-art Big Data technologies and exposes the 
complexity of the ecosystem, i.e. how the hardware, management, platform and application 
must be integrated. For instance, each technology performs a particular task in contrast to 
conventional databases, which can execute several tasks such as storing, processing, and 
analyzing. Chapter 4 introduces the Big Data architecture utilizing Big Data technologies in the 
transport sector. Chapter 5 investigates Big Data benchmarks to learn, how we can select 
appropriate tools and architecture. Chapter 6 is our contribution that proposes a custom 
application benchmark. It is a proposal to convert an application into a benchmark tailored to 
a specific use case and specific data. Finally, Chapter 7 summarizes all findings, provides 
general conclusions and identifies needs for further research.  

1.3 Target audience 

The findings of this document will bring value to those who develop Big Data platforms in the 
transport industry. D1.1 revealed that many organizations and companies, in research and 
industry, who target big data applications in the transport domain are confronted with the 
technical challenges of utilizing big data technologies. This indicates the great interest that lies 
in the transport industry to tackle these challenges. This report aims to meet the needs by 
providing a platform-level-solution utilizing Big Data technologies. In addition, this document 
offers a practical guideline for anyone who wants to implement an application by harnessing 
state-of-art Big Data technologies. 
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2 Big Data Analytics 

Big Data analytics is the process of extracting values from the complex and large amount of 
data. Type of data analytics is determined corresponding to the data mining objective. This 
means that the type of data analytics needs to be set at the initial phase of the data mining 
process. Some data mining objectives are relatively simple such as generating a report or 
gaining the awareness of the data. However, some objectives are complex as providing an 
actionable value with a specific decision.  

There are four dominant types of analytics namely: descriptive analytics, diagnostic analytics, 
predictive analytics and prescriptive analytics. And each of these offers a different level of 
insights as shown in Figure 2. 

 

Figure 2: Visualization of data analytics type1 

Descriptive analytics provides information on a given dataset. It aims to offer a better 
understanding of data with numerous perspective views. Data visualization of the statistical 
summary is the de facto standard method in this phase. Clustering algorithm in machine 
learning is a new approach to understand the intrinsic structure of data. For instance, popular 
cases in descriptive analytics are the automatic customers’ segmentation or news article 
segmentation.  

Diagnostic analytics aims to identify a set of driving predictors (features) to a data mining 
goal. It is also known as data forensics because this phase tries to capture the reasons leading 
to the mining questions. It is not necessarily the causation, but more association with the 
target variable. The outcome of this phase can be a subset of features or weighted features 
which are corresponding to the mining goal.  

Predictive analytics tries to predict what will happen to the newly arriving data (unknown 
data) based on the given dataset. Classification algorithm and regression algorithm in machine 
learning are the popular algorithm families. They create either a classifier2 or a regressor3. For 
instance, a binary classifier can predict if my flight would be delayed or not, whereas a 
regressor can predict how many free parking lots will be available at a certain time and date.  

                                                      

1 https://www.gartner.com/newsroom/id/2881218  
2 https://en.wikipedia.org/wiki/Statistical_classification 
3 https://en.wikipedia.org/wiki/Regression_analysis 

https://www.gartner.com/newsroom/id/2881218
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Prescriptive analytics aims to provide actionable values after making a prediction. It is the 
next step of predictive analytics that encourages a decision maker to make an action based on 
the prediction from the previous phase. For instance, a system can predict traffic jams at a 
certain time and recommend the best routing connection based on the predicted result. 

2.1 Analytics in the transport sector 

In the transport sector, descriptive analytics is the most studied in the last 15 years according 
to (Ghofrani et al., 2018). This study conducted an intensive literature review and investigates 
106 studies on recent applications of big data analytics in railway transportation systems.  

It shows that the majority of studies are at descriptive analytics in railway transportation 
systems (37%), predictive analytics (34%) is following and prescriptive analytics (29%) is the 
least studied. 

Figure 3 classifies the analytics type of 106 studies and Figure 3 shows the distribution of level 
of result-oriented analytics in each year. Almost half the studies were focused on the use of 
analytics for the maintenance of the railway transportations system using amongst others 
sensor, traffic and inspection data. 

 

 

Figure 3: Type of analytics in the studied articles by year (Ghofrani, F., et al., 2018) 

 

An online survey conducted 2015 by Schoenherr et al. showed that 45% of individuals, who 
operate in the field of transport and logistics, use data analytics or at least plan to use it in the 
future. The participants of the survey owned a position commonly associated with logistics 
and transportation. In total 240 individuals were asked. The selection of the participants 
suggests that very unspecific conclusions can be made, since there no indication to which 
degree participants hold decision making powers. 

Since 2013 the number of research papers surveyed by Ghofrani et al. (2018) are suggesting 
an increasing interest in data analytics in transport. According to Schoenherr et al. (2015) 
almost half of the individuals related to the transport and logistics industry see at least a future 
use of data analytics in their field. There is no conclusive research available clarifying which 
and how many companies already implemented data analytics in the transport sector in 
Europe, or are planning to, which technologies are used and what the measurable benefits 
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are. The next work package of this project will focus on case studies of companies and 
institutions in the transport sector and their potential use of data analytics. The analysis of 
this research will provide some insight regarding this topic.  

A Big Data analytics process consists mainly of two individual layers, a conceptual and an 
architecture or technology layer. These two layers are framed by the formulation of the 
domain-specific goals and tasks for which the analytics are utilized.  

Figure 4 visualizes a schematic overview of the Big Data analytics pipeline adapted to the 
transport sector. This depiction is not aiming for completeness but offers an understanding of 
the interaction between challenges in the transport sector and the corresponding Big Data 
architecture. Here the conceptual layer is about defining and formulating the necessary steps 
of the analytics process. On top of the technology layer, sequential steps of data processing 
are defined. Each step in the conceptual layer corresponds to a specific Big Data architecture 
which suits the corresponding task and meets the necessary requirements. 

Data analytics is a toolset which can help reach existing goals in transportation. These goals 
can be of political or social nature, like improving the quality of life in urban areas by finding 
efficient solutions for passenger mobility or freight transport. These solutions can, for 
example, reduce the occupation of space by individual car usage. Pollution in urban areas can 
be reduced by using analytics for optimizing energy consumptions. Facing the challenge of an 
aging society, data analytics can be employed to provide a sufficient mobility service in rural 
areas. Another important goal is to reach climate protection target emissions within the 
transport sector.  

Companies associated in the transport sector employ Big Data analytics for example to reduce 
their costs for maintenance of vehicles and infrastructure, to increase the energy and cost 
efficiency in the transportation process or optimize their logistics to name a few. Another 
important objective is the improvement of customer’s satisfaction (Khan et al., 2017). 

In order to reach the predefined goals, tasks structuring data analytics procedures are 
formulated. In the transport sector, the amount of available data is huge, coming from various 
sources related to transportation, as freight, passengers, vehicles, infrastructure, etc. Data can 
be generated by a sensor, via human input or even be the output of a previous analytics 
process. This first stage is indicated in the left black box of Figure 4 labeled as Available Data. 
In Deliverable 1.1 (Hee et al., 2018) of this project various sources of data and corresponding 
available information are provided and discussed in detail. 

The unprocessed data is often stored in so-called Data Lakes, which allow the storage of huge 
amounts of data with various formats and offer several interfaces for data retrieval, relational 
or non-relational. This software is built on a hardware architecture which fulfills the 
corresponding demands in capacity and speed. In sections 3.1 to 3.3 of this report, the 
different components of the Big Data software and hardware technology are discussed in 
detail. 

Defining which information to use for a specific task, preparing and selecting data from 
relevant features and instances, is the first step of the analytics procedure. The data needs to 
be cleaned and the data quality needs to be assessed. It undergoes a process of discretization, 
compression, and spatial and temporal alignment. Suitable formats are chosen and the data 



 

 

 Figure 4: The Big Data analytics pipeline in the Big Data technology environment adapted for the example of transportation. 
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is managed in a way it can be dealt with in accordance to existing policies like privacy 
regulations. For machine learning tasks a training set is built. 

This step requires certain processing and management technology which is explained in greater 
detail in section 3.4. 

This first step is in many cases the most work-intensive one offering many challenges.  For 
example, Traffic Management Systems (TMSs) are often build of components with limited 
integration capabilities and non-standardized interfaces and display rules. This makes the 
employment of data analytics hardly feasible. A standardized approach of data collection and 
dispatching can help to enable an integrated TMS. This would mean the creation of 
standardized interfaces and a standardized technology environment specifically for transport 
processes (Luckow et al., 2017). 

In a next step the actual analytics, modeling, or statistical analysis is done using the 
preprocessed data. This intermediate step starts from the black box indicated in Figure 4  
labeled with Processed Data. This step might, for example, consist of building interfaces with 
monitoring systems providing access to timestamp and position of vehicles and the real-time 
transmission of this information by writing a suitable processing script. Now algorithms are 
designed based on the formulated tasks or suitable statistical methods and modeling 
prescriptions are selected. Section 3.4 of this report offers an overview of the most relevant 
tools used for this step. 

Before the analyzed data (indicated in Figure 4 as a black box labeled with Analyzed Data) can 
be used as a basis for decision making or predictions in order to reach the underlying goals, it 
must be made interpretable. It will be processed using visualization techniques to create 
infographics, texts or tables. Using suitable technology, one finally can create interpretable 
data. Only after having completed this step (indicated in Figure 4 as a black box labeled with 
Interpretable Data) value in terms of predictions, the basis for decision making, etc. can be 
created from the use data analytic tools. 

The complete analytics procedure can be understood as an iterative process. Interpretable data 
supports reaching the desired goals but also triggers the formulation of new ones through 
newly gained insights. The increasing amount of available data will lead to a formulation of new 
tasks, which again influences the formulation of goals and so on. 

The two main domains of transport, passenger and freight transport, offer distinct challenges 
and goals to reach. The modal split is quite different for both sectors.  

In freight transport in Europe ca. 75% of freight is transported on roads, 18% on the rail and 
almost 7% via inland shipping. The modal split is almost constant for the last decade. More than 
92% of passenger transport is conducted on roads, which is the sum of 82% share with 
passenger cars and 10% busses. Only ca. 8% of passenger transport in Europe is done via rail 
(Eurostat, 2017).  

In order to reach the formulated goals in the transport sector, data analytics can help to 
improve accessibility and availability of certain modes supporting a change in modal split. An 
example would be to decrease the number of routes in cities conducted with cars or trucks via 
roads via for example ride sharing or alternative modes.  
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Freight: the context of the logistics industry and supply chain  

In freight, five main sources for data generation exist: the infrastructure, the vehicles, the 
drivers, the company and the freight itself.  

Data from other sources, like weather data or social media data might also be useful for certain 
domain specific tasks. A huge amount of data in logistics is produced by sensors implemented 
in the vehicles, infrastructure, freight or even driver’s mobile devices. Possible sources of data 
are, just to mention a few, RFID chips attached to freight, sensors collecting data about the fuel, 
air, pressure and other data on the physical status of vehicle parts. Data is collected by the 
signaling or satellite navigation systems like GPS – either from data receivers in vehicles or 
freight, but also from mobile devices of passengers or drivers. This data can be combined with 
e.g. weather or geographical data, or customer demand data. 

Some of the major topics to be addressed by data analytics in the logistics industry transport 
sector are (Jeske et al., 2013): 

 (Real-time) route optimization: routes are dynamically adjusted with the help of data 
analytics using traffic, weather, supply and demand information,  

 Network and capacity planning: short- to long term planning of available network and 
capacity along the supply chain, 

 Predictive and prescriptive maintenance of vehicles and infrastructure,  

 Risk evaluation and resilience planning: using data analytics for predictive maintenance 
of the involved vehicle stock and minimize failure due to climate or geographical 
incidents, 

 Environmental intelligence: collected data on pollution, traffic, noise and occupied space 
can be used to improve conductions, 

 A special emphasis lies on the “last mile”, wherein the context of distribution of goods a 
multimodal approach can be useful in order to optimize for example deliveries.  

Analytics of these data types is employed for logistic planning, e.g. for optimizing the 
distribution of freight. Distribution of goods can be formulated as a network problem starting 
from the production point (or points), through possible intermediate points, until reaching the 
destination, with different values for supply, capacity, and demand on each network point or 
path. In order to react to fluctuating customer demands and network capacity, predictive 
analytics are essential tools to deal with the complex network problems.  

The optimization of routing is another important topic in logistics. The optimal route depends 
on the necessary number of stops (nodes) and the available data on the paths between these 
nodes (e.g. traffic, weather, infrastructure status, etc.) and analytics. Long term fleet monitoring 
can help minimize the cost of maintenance, material, capital investment and is, therefore, an 
important sector for data analytics. Strategy decisions and risk management of logistics 
processes can be better accessed using descriptive and predictive analytics.  

Predictive or prescriptive maintenance using data analytics can be distinguished into three main 
parts: system component degradation modeling, infrastructure and vehicle cost modelling and 
the real-time monitoring and visualization of the vehicles and infrastructure condition. Coping 
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with climate change predictive analytics provide improved usability of energy efficient transport 
modes and offer predictive analytics of greenhouse emissions or nitrogen oxide outputs.   

Passengers: improved and connected mobility service 

Other than in the logistics industry, data analytics for creating improved passenger mobility is 
offered by one or several parties like public transport companies, car retailers or an 
independent platform, but used by a private person or group. Improved passenger mobility can 
refer to intelligent transport in urban areas. Based on data analytics and software it enables the 
use of multimodal mobility options to optimize time and cost and to minimize for example 
pollution or traffic.   

In order to create bigger value, data analysis methods and platforms owned by the individual 
players, e.g. public transport companies, car sharing providers, taxis, bike or car rental 
companies, etc., need to be connected. This connection needs advanced analytics itself in order 
to create meaningful action or products. 

Predictive analytics from data like satellite navigation, traffic, social media, etc. can be used to 
optimize the connection of different parts of an entire passenger route, combining different 
modes. The matching of travel routes of different individuals for the purpose of ride or vehicle 
sharing can be realized in an efficient way based on data analytics. In rural areas, the challenges 
for mobility concepts are others than in the urban areas. In rural region, data analytics might 
be most useful in order to provide autonomous, demand-based public transport in order to 
operate cost effectively. New business models offering flexible, connected and multimodal 
mobility are needed and can be designed using descriptive data analytics. 

Important analytics methods for improved passenger transport using anonymized passenger 
data are modeling and prediction of movement patterns, dwell and travel mode analysis and 
the optimization of the first and last mile (Poonawala et al., 2016; Heggenber et al., 2018). 

2.2 Data Driven Methodologies  

Knowledge discovery in databases (KDD) is the data mining process of turning data into 
knowledge (Goebel & Gruenwald, 1999). The KDD process can be split into multiple stages and 
there are many standardized methodologies available for the KDD process. However, there is 
no specific data driven methodology for transportation. Three methodologies are commonly 
used in research and in practice namely: CRISP-DM, SEMMA, and KDD.  

 The CRISP-DM methodology (Anand et al., 2007) is the acronym of CRoss Industry 
Standard Process for Data Mining developed by DaimlerChrysler, SPSS, NCR, and OHRA.  

 The SEMMA methodology (Matignon, 2007) is the acronym for Sample, Explore, Modify, 
Model, and Assess developed by SAS Institute.  

 KDD process is short for the Knowledge Discovery in Databases. It has emerged from a 
research community and first introduced by (Fayyad & Smyth, 1996) and (Piatetsky-
Shapiro et al., 1996).  

This report explains the data mining process with a focus on CRISP-DM and then SEMMA and 
KDD will then be compared to the stage by stage based on CRISP-DM as shown in Table 1. 
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Table 1: Summary of methodologies 

CRISP-DM SEMMA KDD 

Business understanding - Learning the application domain 

Data understanding Sample Creating a target dataset 

Explore Data cleaning and preprocessing 

Data preparation Modify Data reduction and projection 

Modeling Model Choosing the function of data mining 

Choosing the data mining algorithm 

Data mining 

Evaluation Assessment Interpretation 

Deployment - Using discovered knowledge 

 

Table 2 is a compilation of studies using data driven methodology in the transportation sector. 
This is the extended table based on the work by (Mohd Selamat et al., 2018). This report 
remarks the mode of each study according to the LeMO taxonomy namely: Air, Rail, Road, 
Urban, Water, and Multimodal. All modes are covered except the multimodal transportation 
mode.  Ten out of fourteen studies adopted the CRISP-DM model and the remaining studies 
used the SEMMA and KDD model equally. The popularity of CRISP-DM is proven by the polls 
conducted at KDNuggets, a leading website on Data Science. In 20021, 20042, 20073 and 20144, 
CRISP-DM is nominated as the most used methodology for developing data mining projects.  

 

Table 2: Examples of Studies using Data Driven Methodology for Transportation 

Studies Methodology Mode Description 

(Chen et al., 2004) CRISP-DM Road Understand the status of the driver such as being out 
on duty, driving against traffic regulations. 

(Viglioni et al., 2007) CRISP-DM Rail Prediction of railroad demands to facilitate operation 
and manpower planning 

(Wong & Chung, 2007) KDD Air Mining passengers ’ demographic, travel behavior and 
core service quality information for customer retention 
initiatives 

(Haluzová, 2008) CRISP-DM Urban Identification of the accident influences between car 
and tram on the electric tramway net 

(Agenda et al., 2008) CRISP-DM Urban Understand the accident and delay behavior of tram in 
Prague. 

(Shin et al., 2009) SEMMA Urban Analyzing passenger pick-up location patterns to 
proposed potential pick-up locations for empty taxis 

(Mirabadi & Sharifian, 
2010) 

CRISP-DM Rail Analyzing historical accident data to discover the 
unsafe condition contributing factors 

(Zhang et al., 2010) KDD Rail Deriving intelligent-based decision making in accident 
treatments 

                                                      

1 https://www.kdnuggets.com/polls/2002/methodology.htm 
2 https://www.kdnuggets.com/polls/2004/data_mining_methodology.htm 
3 https://www.kdnuggets.com/polls/2007/data_mining_methodology.htm 
4 https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html 
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(Nayak et al., 2011) CRISP-DM Road Modeling the crash proneness of road segments for 
road safety. 

(Greis & Nogueira, 2011) CRISP-DM Water Identification of high-risk shipments reaching the US 
ports 

(de Almeida & Ferreira, 
2013) 

SEMMA Road Identification of the most fuel-efficient resources in 
route operation and areas of resources for 
improvements 

(Lukácová et al., 2014) CRISP-DM Air Analyzing the aviation historical incident data to 
predict potential incidents and implications 

(Moreno-Díaz et al., 
2015) 

CRISP-DM Urban Predicting passenger demand for efficient resource 
planning and deployment 

(Cristóbal et al., 2018) CRISP-DM Urban Analyzing travel time to understand the behavior 
patterns of travel times on the different transport 
routes 

 
The CRISP-DM is not a linear process, but an iterative process with six phases and numerous 
bidirectional arrows as shown in Figure 5. The outer circle and the arrows in the diagram 
represent the nature of the data mining process. The lessons learned from one phase can trigger 
another phase, but the process may not end to the stage of Deployment due to the bidirectional 
dependencies.  

 

Figure 5: CRISP-DM showing the relationship between the different phases (IBM, 2011) 

 
The six phases of CRISP-DM are namely: Business Understanding, Data Understanding, Data 
Preparation, Modeling, Evaluation, and Deployment. The initial phase is the Business 
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understanding in CRISP-DM. This phase does not exist in SEMMA. The goal of this phase is 
setting a data mining objective in the context of the problem domain.  

The next phase is the Data understanding consists of multiple activities such as data collection, 
data exploration, data sampling and more. The goal of this phase is to get familiar with the data 
and discover hidden insights into the data. The corresponding phases in SEMMA are Sample 
and Explore, meanwhile two phases are found in KDD namely: Creating a target dataset and 
Data cleaning and preprocessing.  

The next phase is the Data preparation which is known as the most recursive and time 
consuming phase.  The goal is to construct the final dataset which will be fed into the modeling 
phase. This phase includes cleaning, imputation, feature engineering (feature selection, 
extraction, and construction) and more. Modify is the corresponding phase in SEMMA, while in 
KDD it is Data reduction and projection. 

The following is the Modeling phase, which includes various activities. For instance, the 
problem type of data mining setting (classification, regression, clustering, abnormally detection 
or reinforcement learning), algorithm selection, and hyper-parameter setting.  

Then, the Evaluation phase is the stage to check the quality of the model before the 
deployment. The goal of this phase is to validate if the model achieves the data mining 
objective(s) defined in the initial phase. It is equivalent to the Assessment in SEMMA, while it is 
equivalent to the Interpretation in KDD process.  

The last phase is the Deployment which is either a data pipeline or a data-driven result. The 
end-to-end data pipeline is more appreciated because it is reusable and repeatable. It is 
noteworthy to mention of the cyclical nature of the method. The experiences of the previous 
process can trigger a new process, in other words, the new process will benefit from the lessons 
learned from the previous process. SEMMA does not cover this phase, but KDD has a similar 
step called Using discovered knowledge phase.  
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3 Big Data Technologies 

There are many technologies available, for advanced analytical workloads of large data. 
Commercial platforms consist of a predefined combination of hardware and software 
components. Examples of commercial platforms are Aster Data Systems1 , Oracle Big Data 
Appliance2, IBM Netezza3, SAP HANA4 and HP Vertica5. Open-source systems or platforms, on 
the other hand, can run on any hardware. Unlike the commercial platforms, they are not like 
readymade appliances, thus they need to be configured by a developer. Examples of open-
source platforms are Apache Hadoop6, Apache Geode7, VoltDB8, Memcached9, and Hazelcast10. 

This report focuses on the heterogeneity of Big Data Technologies in the Hadoop Ecosystem.  
Hadoop, the most commonly used framework, combines commodity hardware with open-
source software (McAfee et al., 2012). Apache Hadoop is a framework that allows managing 
distributed processing of big data across clusters of computers using simple programming 
models. It was inspired by Google's MapReduce and Google File System (GFS) and in practice, 
it has been realized to be adopted in a wide range of cases.  Apache Hadoop is designed to scale 
up from single servers to thousands of machines, each of them offering local computation and 
storage. Hadoop is composed of the Hadoop Distributed File System (HDFS) and of the 
programming paradigm MapReduce (Karloff et al., 2010). HDFS allows applications to be run 
across multiple servers, which have usually a set of inexpensive internal disk drives; the 
possibility of the use of common hardware is another advantage of Hadoop. The MapReduce is 
capable to detect and solve failures automatically in the cluster. The redundancy, in fact, 
provides fault tolerance and capability to self-healing of the Hadoop Cluster.  

A similar and interesting solution is HadoopDB, proposed by a group of researchers at Yale. 
HadoopDB was conceived with the idea of creating a hybrid system that combines the main 
features of two technological solutions: parallel databases in performance and efficiency, and 
MapReduce based system for scalability, fault tolerance, and flexibility. The basic idea behind 
HadoopDB is to use MapReduce as the communication layer above multiple nodes running 
single-node DBMS (Database Management System) instances. Queries are expressed in 
Structured Query Language (SQL) and then translated into Map-Reduce. In particular, the 
solution implemented involves the use of PostgreSQL as database layer, Hadoop as 
communication layer, and Hive as the translation layer (Abouzeid et al., 2009).  

                                                      

1 https://www.teradata.com/Products/Analytics-Platform 
2 https://www.oracle.com/engineered-systems/big-data-appliance/index.html 
3 https://www.ibm.com/analytics/netezza 
4 https://www.sap.com/products/hana.html 
5 https://www.vertica.com/ 
6 http://hadoop.apache.org/ 
7 http://geode.apache.org/ 
8 https://github.com/VoltDB/voltdb 
9 http://memcached.org/ 
10 https://hazelcast.org/ 
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However, the majority of the studies that we introduce will be focussing on the heterogeneity 
of the storage components in Hadoop Ecosystem. A Big Data system consists of multiple 
components each with specific functionality, thus the heterogeneity is also scattered in other 
layers. For example, data, stream or graph processing technologies can be used in a Big Data 
system depending on the use case. Numerous classifications and taxonomies of the Big Data 
technologies have been developed by many researchers.  

However, there is no consensus among studies for a universal taxonomy of the Big Data 
technologies.  For instance, Hu et al. present the history and definitions of Big Data with a map 
of the Big Data technologies dividing them into four phases: Generation, Acquisition, Storage, 
and Analytics. They further suggest a Big Data layered architecture consisting of infrastructure, 
computing and application layers (Hu et al., 2014). Hashem et al. propose the classification of 
the Big Data technologies with the large-scale data in the cloud. They identify five aspects: i) 
data source, ii) content format, iii) data stores, iv) data staging and v) data processing (Hashem 
et al., 2015). Lipic et al. present an overview of big data tools. Additionally, they provide an 
abstract Big Data analysis stack consisting of four layers: i) Cloud resources, ii) Processing 
engines, iii) Applications and iv) Data analysis (Lipic et al., 2014). The authors (Wu et al., 2015) 
present a comprehensive taxonomy based on various aspects of the large-scale data 
management systems covering the data model, the system architecture and the consistency 
model. The authors (Qiu et al., 2014) give an extensive overview of the Apache Big Data Stack 
and propose an integration with High-Performance Big Data Stack.  

This report follows the classification proposed by (Ivanov et al., 2016). This study made an 
intuitive representation of a Big Data platform with the concept the heterogeneity paradigm. 
The heterogeneity paradigm is a concept to understand core components of the Hadoop 
Ecosystem and investigates the interconnection between its components. It also maps each 
component into different layers to provide a comprehensive overview of the Hadoop 
Ecosystem. Based on the concept of heterogeneity, an abstract view of a Big Data technology 
groups was defined and presented in Table 3.  

The architecture consists of four layers, which are also called levels: hardware, management, 
platform, and application. This division in levels is not strict but represents the major features 
and functionality of the components in a Big Data platform. The hardware layer represents the 
server components of the system and the fact that they can vary in storage, memory and 
processor type and size. The management layer is dealing with the system resource 
management and offers services to the applications running on the upper layers. The platform 
layer represents the main storage and processing services that a Big Data platform provides. 
Finally, the application layer is hosting the variety of Big Data applications running on top of the 
services provided by the lower layers. 

The rest of this section (3.1, 3.2, 3.3, and 3.4) looks deeper into each level by enlisting the 
respective technology components and their categories. Note that major part of the text has 
been published in (Ivanov et al., 2017) at Chapter 15 “The Heterogeneity Paradigm in Big Data 
Architectures” and reprinted here with permission of the authors.  



            D1.3: Big Data Methodologies, Tools and Infrastructures, P 

 

15 

 

Table 3: Abstract Big Data Technology Group 

Heterogeneity Level Abstract Big Data Technology Group 

Application Data, Stream & Graph Analytics Content Analysis 

Machine Learning Procedural Language 

Application Framework Search Engine 

SQL-on-Hadoop Data Modeling 

Data Acquisition Library Collection 

Platform Data Collection Data Governance 

Data Serialization Machine Learning Framework 

Data Layout Workflow Scheduling 

In-Memory Storage Execution Framework 

Data & Graph Storage Data, Stream & Graph Processing 

Management System Interfaces 

Cloud Application Deployment Application Management 

Distributed Coordination Messaging Management 

Cluster Monitoring & Management 

Virtualization-based & Container-based Resource Management 

Hardware Memory Type & Size CPU Type & Number of Cores 

Storage Type & Size Accelerator Modules 

 

3.1 Hardware Level 

Undoubtedly recent advances in the processing and storing capabilities of the current 
commodity (off-the-shelf) servers have drastically improved while at the same time becoming 
cheaper (Intel, 2006). This reduces the overall cost of large-scale clusters consisting of 
thousands of machines and enables the vendors to cope with the exponentially growing data 
volumes, as well as the velocity with which the data should be processed. However, there have 
been other components like Field Programmable Gate Arrays (FPGAs), GPUs (Graphics 
Processing Unit), accelerator modules and co-processors which have become part of the 
enterprise-ready servers. They offer numerous new capabilities which can further boost the 
overall system performance such as: 

1. optimal processing of calculation intensive application; 
2. offloading part or entire CPU (Central Processing Unit) computations to them; 
3. faster and energy efficient parallel processing capabilities; and 
4. improved price to processing ratio compared to standard CPUs. 

Recently, there have been multiple studies investigating how these emerging components can 
be successfully integrated into the Big Data platforms. In (Shan et al., 2010), the authors present 
a MapReduce framework (FPMR) implemented on FPGA that achieves 31.8x speedup compared 
to a CPU-based software system. (Kambatla & Chen, 2014) investigate the performance 
improvements of using Solid State Drives (SSDs) as an alternative to hard-disk drives and 
conclude that SSDs can achieve up to 70% higher performance for the 2.5x higher cost-per-
performance. Similarly, (Kang et al., 2013) show that sorting in Hadoop with SSDs can be more 
than 3 times faster and reduce drastically the power consumption compared to hard disks. 
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Diversifying the core platform components motivates the investigation of the concept of 
heterogeneity on a hardware level and the new challenges that it introduces. Using the right 
hardware modules for a particular application can be crucial for obtaining the best price-
performance ratio. 

3.2 Management Level 

As seen in Table 3 the management layer is positioned directly above the hardware level. It is 
responsible for the management and optimal allocation and usage of the underlying hardware 
components. There are multiple ways to achieve this: 

 directly installing the operating system, 

 using a container technology (container-based virtualization), 

 using a virtualization technology (hypervisor-based virtualization) and 

 utilizing a hybrid solution between the operating system (OS) and virtualization. 

In the recent years, virtualization has become the standard technology for infrastructure 
management both for bigger cloud and data center providers as well as for smaller private 
companies (Staten et al., 2008). However, along with the multiple benefits that virtualization 
brings, there are also new challenges. The co-location of virtual machines hosting different 
application workloads on the same server makes the effective and fair resource allocation 
problematic. Also, the logical division of virtual machines with similar characteristics is not 
always possible. In the case of Big Data platforms with changing workloads, it is difficult to meet 
the network and storage I/O (input/output) guarantees. Therefore, the container-based 
virtualization, which comes at much smaller overhead as it is directly supported by the 
operating systems, has become a very popular alternative. Virtualization technologies provide 
better resource sharing and isolation in exchange for a higher overhead, whereas container-
based systems achieve near-native performance but offer poor security and isolation (Xavier et 
al., 2014). 

The Serengeti project (VMware, 2013, 2014) is one of the first initiatives to automate the 
management, starting, stopping and pre-configuring of Hadoop clusters on the fly. It is an open 
source project started by VMware and now integrated into vSphere as Big Data Extension, 
which has the goal to ease the management of virtualized Hadoop clusters. By the 
implementation of hooks to all major Hadoop modules, it is possible to know the exact cluster 
topology and make it aware of the hypervisor layer. This open source module is called Hadoop 
Virtual Extension (HVE) (VMware, 2013). Very interesting is the new ability to define the nodes 
(virtual machines) as either only compute or data nodes. The above implies that some nodes 
are storing the data in HDFS, while others are responsible for the computation of MapReduce 
jobs. Another very similar project, called Sahara (OpenStack, 2014), was developed as part of 
the OpenStack platform. 

At the same time, there are a variety of other technologies, which help and improve the 
management of a Big Data environment, such as monitoring, deployment, coordination, 
messaging and resource scheduling tools. An extensive list of such tools together with a short 
description is provided in Table 4. 
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Table 4: Management Level Components 

Type Tools Description 

Virtualization-
based Resource 
Management 

Serengeti/Big 
Data Extensions 

It is an open-source project, initiated by VMware, to enable the rapid 
deployment of Hadoop (HDFS, MapReduce, Pig, Hive, and HBase) on a 
virtual platform (vSphere). (VMware, 2013, 2014) 

Sahara/Savanna 
 

It aims to provide users with simple means to provision a Hadoop 
cluster at OpenStack by specifying several parameters like Hadoop 
version, cluster topology, nodes hardware details and a few more. 
(OpenStack, 2014) 

Cluster 
Resource 
Management 
 

Mesos 
 

A cluster manager that provides efficient resource isolation and sharing 
across distributed applications, or frameworks like Hadoop, MPI, 
Hypertable, Spark, and other applications. (Hindman et al., 2011) 

YARN  
 

YARN (Yet Another Resource Negotiator/MapReduce 2.0) is a 
framework for job scheduling and cluster resource management.  
(Vavilapalli et al., 2013) 

Container-based 
Resource 
Management 

Docker 
 

It is an open platform for developers and sysadmins to build, ship, and 
run distributed applications. Consisting of Docker Engine, a portable, 
lightweight runtime and packaging tool, and Docker Hub, a cloud 
service for sharing applications and automating workflows. (Docker, 
2014) 

LXC/Linux 
Containers 

LXC provides operating system-level virtualization through a virtual 
environment that has its own process and network space, instead of 
creating a full-fledged virtual machine. LXC relies on the Linux kernel 
groups functionality that was released in version 2.6.24. 

CoreOS CoreOS is an open source lightweight operating system based on the 
Linux kernel and designed for providing infrastructure to clustered 
deployments while focusing on automation, ease of applications 
deployment, security, reliability, and scalability. 

Cluster 
Monitoring & 
Management 

Ambari It provides an intuitive, easy-to-use Hadoop management web UI 
backed by its RESTful APIs for provisioning, managing, and monitoring 
Apache Hadoop clusters 

Helix Apache Helix is a generic cluster management framework used for the 
automatic management of partitioned, replicated and distributed 
resources hosted on a cluster of nodes. Helix automates reassignment 
of resources in the face of node failure and recovery, cluster expansion, 
and reconfiguration. 

Application 
Management 

Cloudera 
Manager 

 Cloudera Manager is application management tool for the Cloudera 
Hadoop Distribution. It automates the administration, installation, 
configuration and deployment of cluster applications as well as offers 
monitoring and diagnostic capabilities.  

Cloud 
Application 
Deployment 

Whirr Whirr is a set of libraries for running cloud services. It provides a cloud-
neutral way to run services, a common service API and can be used as a 
command line tool for deploying clusters. 

JCloud Jcloud is an open source multi-cloud toolkit for the Java platform. It 
provides functionality to create and control portable applications 
across clouds using their cloud-specific features. 

Distributed 
Coordination 

ZooKeeper 
 

A centralized service that enables highly reliable distributed 
coordination by maintaining configuration information, naming, 
providing distributed synchronization, and group services. (Hunt, Konar, 
Junqueira, & Reed, 2010; Junqueira & Reed, 2009) 

Messaging 
Management 

Kafka It is a distributed messaging system for collecting and delivering high 
volumes of log data with low latency. (Kreps, Narkhede, & Rao, 2011) 

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Scalability
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System 
Interfaces 

Hue Hue is a Web interface for analyzing data with Apache Hadoop. It 
supports a file and job browser, Hive, Pig, Impala, Spark, Oozie editors, 
Solr Search dashboards, Hbase, Sqoop2, and more. 

 

3.3 Platform Level 

The platform layer represents the actual Big Data platform which is responsible for the 
provision of general data and processing capabilities. In the last years Apache Hadoop has 
become the de facto platform for Big Data. It has two core components: HDFS and YARN 
(MapReduce 2.0). HDFS is responsible for the data storage, whereas YARN is for the processing 
and resource allocation between the jobs. More recently, Yahoo released the Storm-YARN 
(Yahoo, 2013) application which combines the advantages of both applications: real-time (low-
latency) and batch processing. It enables Storm applications to utilize the Hadoop resources 
managed by YARN, which will offer new abilities for faster and more optimal data processing. 
The Spark platform developed by Zaharia et al. (Zaharia et al., 2012; Zaharia et al., 2010) is built 
on top of HDFS and introduces the concept of Resilient Distributed Datasets (RDDs). RDDs are 
fault-tolerant, parallel data structures that let users explicitly persist intermediate results in 
memory, control their partitioning to optimize data placement, and manipulate them using a 
rich set of MapReduce-like parallel operations (iterative machine learning algorithms and 
interactive data analytics).  

The above are just a few examples of the existing platforms for data storage and processing. 
The question “How to choose the right framework for a specific use case?” is very important, 
but one needs sufficient background knowledge in order to answer it, as pointed out by Grover 
(Grover, 2015). In his post, he discusses and categorizes the different frameworks which can be 
run on top of HDFS. This complies with the chapter’s goal, on providing an overview of the 
variety of frameworks in the platform layer. Table 5 provides a list of components, grouped by 
their functionality types. In the upper part are the storage components (Data, Graph and In-
memory storage), followed by multiple processing frameworks (Data, Stream and Graph 
processing) and data tools. In addition, there are execution and machine learning frameworks 
as well as tools for workflow management.  

The list of new frameworks and tools is constantly growing as are the new application 
requirements of the upper layer. Therefore, the importance of understanding the 
heterogeneity on this platform level is very essential for the successful management and 
processing of large datasets. 

Table 5: Platform Level Components 

Type Tools Description 

Data 
Storage 

HDFS  
 

Apache HDFS (Hadoop Distributed File System) is a distributed file system that 
provides high-throughput access to application data. (Borthakur, 2008) 

Hbase 
 

Apache Hbase is the Hadoop database, a distributed, scalable, big data store. It 
is used for random, realtime read/write access to your Big Data and is modeled 
after Google’s Bigtable (Chang et al., 2008) (George, 2011) 

Accumulo Apache Accumulo sorted, distributed key/value store is a robust, scalable, high 
performance data storage and retrieval system. It is based on Google’s Bigtable 
design and is built on top of Apache Hadoop, Zookeeper, and Thrift. 
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Hypertable Hypertable is open source,scalable, distributed key/value store based on 
Google’s Bigtable design, running on top of Hadoop. 

Cassandra Apache Cassandra’s data model offers the convenience of column indexes with 
the performance of log-structured updates, strong support for denormalization 
and materialized views, and powerful built-in caching. 

Phoenix  Apache Phoenix is high performance relational database layer over Hbase for 
low latency applications. 

Graph 
Storage 

Titan Titan is a scalable graph database optimized for storing and querying graphs 
containing hundreds of billions of vertices and edges distributed across a multi-
machine cluster. Titan is a transactional database that can support thousands of 
concurrent users executing complex graph traversals in real time. 

In-Memory 
Storage 

Tachyon 
 

Tachyon is an open source, memory-centric distributed file system enabling 
reliable file sharing at memory-speed across cluster frameworks, such as Spark 
and MapReduce. (Li et al., 2013; Li, Ghodsi, Zaharia, Shenker, & Stoica, 2014) 

Data 
Governance 

Cloudera 
Navigator 

Cloudera Navigator offers comprehensive auditing across Hadoop cluster by 
defining and automatically collecting data lifecycle activities such as retention 
and encryption policies. 

Falcon Apache Falcon is a data processing and management solution for Hadoop 
designed for data motion, coordination of data pipelines, lifecycle management, 
and data discovery. Falcon enables end consumers to quickly onboard their data 
and its associated processing and management tasks on Hadoop clusters. 

Data 
Collection 

Chukwa 
 

Apache Chukwa is a data collection system for managing large distributed 
systems. It also includes a flexible and powerful toolkit for displaying, 
monitoring and analyzing results to make the best use of the collected data. 
(Boulon et al., 2008; Rabkin & Katz, 2010) 

Data 
Serialization 

Avro Apache Avro is a data serialization system. It provides: 1) rich data structures; 2) 
a compact, fast, binary data format; 3) a container file, to store persistent data; 
4) remote procedure call (RPC) and 5) simple integration with dynamic 
languages. 

Data Layout Parquet Apache Parquet is a columnar storage format available to any project in the 
Hadoop ecosystem, regardless of the choice of data processing framework, data 
model or programming language. 

Data 
Processing 

MapReduce 
 

A YARN-based system for parallel processing of large datasets. (Dean & 
Ghemawat, 2008) 

Spark 
 

Apache Spark is an open source cluster computing system that aims to run 
programs faster by providing primitives for in-memory cluster computing. Jobs 
can load data into memory and query it repeatedly much more quickly than 
with disk-based systems like Hadoop MapReduce. (Zaharia et al., 2012; Zaharia 
et al., 2010) 

Stream 
Processing 

Storm 
 

An open source distributed real-time computation system. Storm makes it easy 
to reliably process unbounded streams of data, doing for real-time processing 
what Hadoop did for batch processing. (Leibiusky, Eisbruch, & Simonassi, 2012) 

Storm-
YARN 
 

It enables Storm applications to utilize the computational resources in a 
Hadoop-YARN cluster along with accessing Hadoop storage resources such as 
Hbase and HDFS. (Yahoo, 2013) 

Samza Apache Samza is a distributed stream processing framework. It uses Kafka for 
messaging, and Hadoop YARN to provide fault tolerance, processor isolation, 
security, and resource management. 

S4 Apache S4 is a general-purpose, distributed, scalable, fault-tolerant, pluggable 
platform that allows programmers to easily develop applications for processing 
continuous unbounded streams of data. 

http://en.wikipedia.org/wiki/Graph_database
http://thinkaurelius.com/2012/08/06/titan-provides-real-time-big-graph-data/
http://thinkaurelius.com/2012/08/06/titan-provides-real-time-big-graph-data/
http://thinkaurelius.com/2013/05/13/educating-the-planet-with-pearson/
http://en.wikipedia.org/wiki/Column-oriented_DBMS


            D1.3: Big Data Methodologies, Tools and Infrastructures, P 

 

20 

 

Spark 
Streaming 

Spark Streaming makes it easy to build scalable fault-tolerant streaming 
applications by using the Spark's language-integrated API, which supports Java, 
Scala, and Python. (Zaharia et al., 2013) 

Workflow 
Scheduling 

Oozie 
 

Apache Oozie is a workflow scheduler system to manage Apache Hadoop jobs. 
(Islam et al., 2012) 

Execution 
Framework 

REEF  
 

REEF (Retainable Evaluator Execution Framework) framework builds on top of 
YARN to provide crucial features (Retainability, Composability, Cost Modeling, 
Fault handling and Elasticity) to a range of different applications. (Chun et al., 
2013) 

Graph 
Processing 

Giraph Apache Giraph is an iterative graph processing system built for high scalability. It 
originated as the open-source counterpart to Pregel (Malewicz et al., 2010), the 
graph processing architecture developed at Google. 

GraphX GraphX is Apache Spark’s API for graphs and graph-parallel computation. It 
unifies ETL, exploratory analysis, and iterative graph computation within a single 
system.  (Gonzalez et al., 2014) 

Dato/ 
GraphLab 

GraphLab is an open source, graph-based, high performance, distributed 
computation framework written in C++.  (Low et al., 2012) 

Pegasus 
 

PEGASUS is a Peta-scale graph mining system, fully written in Java. It runs in 
parallel, distributed manner on top of Hadoop. (U. Kang, Tsourakakis, & 
Faloutsos, 2009) 

Machine 
Learning 
Framework 

Oryx The Oryx open source project provides simple, real-time large-scale machine 
learning / predictive analytics infrastructure. It implements a few classes of 
algorithm commonly used in business applications: collaborative 
filtering/recommendation, classification/regression, and clustering. (Cloudera, 
2015) 

MLbase 
 

MLbase is a platform for Implementing and consuming Machine Learning 
techniques at scale, and consists of three components: MLlib, MLI, ML 
Optimizer. MLlib is Spark’s scalable machine learning library consisting of 
common learning algorithms and utilities.  (Kraska et al., 2013; Talwalkar et al., 
2012) 

H2O H2O is an open source platform, offering machine learning algorithms for 
classification and regression over BigData. It is extensible and users can build 
blocks using simple math legos in the core. H2O keeps familiar interfaces like R, 
Excel & JSON. (0xdata, 2015) 

 

3.4 Application Level 

Satisfying all the Big Data application characteristics requires the platform to support all types 
of components starting from the data retrieval, aggregation, and processing including data 
mining and analytics. Moreover, applications with very different characteristics should be able 
to run effectively co-located on the same platform, which should further guarantee optimal 
resource and functionality management, fair scheduling and workload isolation. These 
requirements outline the importance of understanding the heterogeneity of the application 
level. To achieve these, the variety of existing technologies and their features should be 
thoroughly investigated and understood. Table 6 summarizes major part of the tools in the 
Hadoop Ecosystem, grouping them according to their functionality type. 

In the first category defined as data acquisition are tools used to move and store data into 
Hadoop. Sqoop (Ting & Cecho, 2013) and Flume are the most widely used tools for data 
acquisition.  

https://spark.apache.org/
http://en.wikipedia.org/wiki/Graph_%28data_structure%29
http://en.wikipedia.org/wiki/C%2B%2B
http://hadoop.apache.org/
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The second category, called SQL-on-Hadoop, represents the variety of Data Warehousing, 
Business Intelligence (BI), ETL (Extract-Transform-Load) (Baer, 2013) and reporting capabilities 
offered by the applications on top of Hadoop. Hive (A. Thusoo et al., 2010; Ashish Thusoo et al., 
2009) is the most popular application in this category. It is a data warehouse infrastructure on 
top of Hadoop that provides data summarization and ad-hoc querying in SQL-like language, 
called HiveQL. Another important category is the application frameworks, which offer ready to 
use packages, libraries, and tools for building custom Big Data applications. The search engine 
category enlists components for enabling full-text search capabilities on top of Hadoop.  

The last categories include different analytics types (Data, Graph and Stream analytics), 
machine learning and content analysis components, implementing specific use case 
functionalities. 

 

Table 6: Application Level Components 

Type Tool Description 

Data 
Acquisition 
 

Sqoop 
 

A tool designed for efficiently transferring bulk data between Apache Hadoop 
and structured data stores such as relational databases. (Ting & Cecho, 2013) 

Flume A distributed, reliable, and available service for efficiently collecting, 
aggregating, and moving large amounts of log data. 

SQL-on-
Hadoop 

Hive 
 

A data warehouse infrastructure that provides data summarization and ad hoc 
querying. (A. Thusoo et al., 2010; Ashish Thusoo et al., 2009) 

HCatalog 
 

A set of interfaces that open up access to Hive’s metastore for tools inside and 
outside of the Hadoop grid. It is now part of Hive. (Capriolo, Wampler, & 
Rutherglen, 2012) 

Impala 
 

It is an open source Massively Parallel Processing (MPP) query engine that 
runs natively on Hadoop, enabling users to issue low-latency SQL queries to 
data stored in HDFS and HBase without requiring data movement or 
transformation. (Kornacker et al., 2015) 

Big SQL 
(IBM) 

Big SQL is a massively parallel processing (MPP) SQL engine that deploys 
directly on the physical Hadoop Distributed File System (HDFS) cluster. This 
SQL engine pushes processing down to the same nodes that hold the data. 

SparkSQL 
(Shark) 

A fully Hive-compatible data warehousing on top of Spark system that can run 
100x faster than Hive. (Engle et al., 2012; Xin et al., 2013) 

Drill 
 

Apache Drill is an open-source software framework (inspired by Google’s 
Dremel) that supports data-intensive distributed applications for interactive 
analysis of large-scale datasets.  (Hausenblas & Nadeau, 2013) 

Tajo 
 

A relational and distributed data warehouse system for Hadoop, that is 
designed for low-latency and scalable ad-hoc queries, online aggregation and 
ETL on large-data sets by leveraging advanced database techniques. 

Presto 
(Facebook) 

Presto is an open source distributed SQL query engine for running interactive 
analytic queries against data sources of all sizes ranging from gigabytes to 
petabytes. (Choi et al., 2013) 

HAWK 
(Pivotal, 
2015b) 
 

HAWQ is a parallel SQL query engine that combines the Pivotal Analytic 
Database with the scalability and convenience of Hadoop. HAWQ reads data 
from and writes data to HDFS natively. It delivers performance, linear 
scalability and provides tools interaction with petabyte range data sets. 
HAWQ provides users with a complete, standards compliant SQL interface. 

MRQL Apache MRQL (pronounced miracle) is a query processing and optimization 
system for large-scale, distributed data analysis, built on top of Apache 
Hadoop, Hama, and Spark. 
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BlinkDB 
 

BlinkDB is a massively parallel, approximate query engine for running 
interactive SQL queries on large volumes of data. It allows users to trade-off 
query accuracy for response time, enabling interactive queries over massive 
data by running queries on data samples and presenting results annotated 
with meaningful error bars. (Agarwal et al., 2012, 2013) 

Library 
Collection 

DataFu 
 

Apache DataFu is a collection of libraries for working with large-scale data in 
Hadoop. The project was inspired by the need for stable, well-tested libraries 
for data mining and statistics. (Hayes & Shah, 2013) 

Data 
Modeling 

Gora Apache Gora is an open source framework that provides an in-memory data 
model and persistence for big data. It supports persisting to column stores, 
key/value stores, document stores and RDBMSs, and analyzing the data with 
extensive MapReduce support. 

Kite Kite is a high-level data layer for Hadoop. It is an API and a set of tools that 
speed up development by enabling you to configure how Kite stores your data 
in Hadoop. (Kite, 2015) 

Application 
Framework 

Tez 
 

Apache Tez is a general-purpose resource management framework which 
allows for a complex processing of directed-acyclic-graph of tasks and is built 
atop Hadoop YARN. (Apache, 2015) 

Cascading Cascading is an open source application development platform for building 
data applications on Hadoop. It is used to create and execute complex data 
processing workflows on a Hadoop cluster using any JVM-based language 
(Java, JRuby, Clojure, etc.), hiding the underlying complexity of MapReduce 
jobs. 

Flink 
(Stratosph
ere) 
 

Apache Flink features powerful programming abstractions in Java and Scala, a 
high-performance runtime, and automatic program optimization. It has native 
support for iterations, incremental iterations, and programs consisting of large 
DAGs of operations.  (Alexandrov et al., 2014) 

Crunch Apache Crunch Java library provides a framework for writing, testing, and 
running MapReduce pipelines. Its goal is to make pipelines that are composed 
of many user-defined functions simple to write, easy to test, and efficient to 
run. 

Search 
Engine 

Lucene 
 

Apache Lucene is an open source, high-performance, full-featured text search 
engine library written entirely in Java. It is a technology suitable for nearly any 
application that requires full-text search, especially cross-platform. 
(McCandless, Hatcher, & Gospodnetic, 2010) 

Solr Apache Solr is highly reliable, scalable and fault tolerant, providing distributed 
indexing, replication and load-balanced querying, automated failover and 
recovery, centralized configuration and more. It is built on Apache Lucene. 

Nutch 
 

Apache Nutch is an open source web search engine based on Lucene and Java 
for the search and index component. It has a highly modular architecture, 
allowing developers to create plug-ins for media-type parsing, data retrieval, 
querying and clustering. (Khare, Cutting, Sitaker, & Rifkin, 2005) 

Elasticsear
ch 

Elasticsearch is an open source, search server based on Lucene. It provides a 
distributed, multitenant-capable full-text search engine with a RESTful web 
interface and schema-free JSON documents. 

Machine 
Learning 

Mahout 
 

A scalable machine learning and data mining library. (Owen, Anil, Dunning, & 
Friedman, 2011) 

Data 
Analytics 

Hama 
 

Apache Hama is an open source project, allowing you to do advanced 
analytics beyond MapReduce.  

Stream 
Analytics 

SAMOA 
 

Apache SAMOA is a distributed streaming machine learning (ML) framework 
that contains a programming abstraction for distributed streaming ML 
algorithms. (De Francisci Morales, 2013) 

http://en.wikipedia.org/wiki/JVM
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/JRuby
http://en.wikipedia.org/wiki/Clojure
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Web_search_engine
http://en.wikipedia.org/wiki/Lucene
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Lucene
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/JSON
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Procedural 
Language 

Pig 
 

A high-level data-flow language and execution framework for parallel 
computation. (Gates et al., 2009; Olston, Reed, Srivastava, Kumar, & Tomkins, 
2008) 

Content 
Analysis  

Tika 
 

Apache Tika is a toolkit that detects and extracts metadata and structured text 
content from various documents using existing parser libraries. (Mattmann & 
Zitting, 2011) 

Graph 
Analytics 

Faunus Faunus is a Hadoop-based graph analytics engine for analyzing graphs 
represented across a multi-machine compute cluster. 

 

http://hadoop.apache.org/
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4 Big Data Architectures  

A big data architecture is an end-to-end system that covers data source ingestion, processing, 
and analysis to deal with a large amount of data. In the previous section, numerous Big Data 
technologies are outlined (Chapter 3). However, designing an optimal system architecture is 
much complex than technologies. One of the reasons is that Big Data architecture incorporates 
multiple Big Data technologies and tools, moreover, the challenges also need to cope with Big 
Data challenges at section 2.2.3 in LeMO deliverable 1.1 (Hee et al., 2018). In general, Big Data 
architectures are leveraging the parallel processing and the distributed storages over a scalable 
system. For instance, Spark is a popular Big Data technology to process a large amount of data 
with low latency in the Big Data architecture, whereas HDFS is one of NoSQL databases and 
widely used as a distributed storage in the Big Data architecture. Kafka is additionally utilized 
to ingest and process the data on the fly.  (Mashrur et al., 2017) depicts a high-level Big Data 
architecture for connected transportation systems as shown in Figure 6.  

 

 

Figure 6: Big Data architecture for connected transportation systems (Mashrur et al., 2017) 

 

The proposed architecture comprises multiple layers: The lowest layer is Collection and Ingest 
layer. It deals with various data sources. For example, vehicle and infrastructure sensor data, 
satellite data, signal data, social media data, weather and geographical data, and more. Various 
data sources and types are generated and ready to be stored or/and processed. Then, Data 
Processing Engines layer manages a basic processing such as batch processing or streaming 
processing. Analytics is done on the Machine Learning Analytics layer which is on the top of the 
processing layer. Data Science layer provides more advanced analytics above. Finally, numerous 
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transportation applications are running on the top. In addition, a few components on Hadoop 
Ecosystem provide some capabilities required by all layers. 

In academia, numerous studies propose a Big Data architecture customized to a certain use 
case. In fact, most studies are investigate network level architectures. The studies leveraging 
Big Data technologies are mainly for the batch processing as shown in Table 7. Only a few 
architectures are designed for the streaming processing.  This chapter will investigate further 
on two specific case studies: one is batch processing architecture, another is stream processing 
architecture.  

 

Table 7: Examples of Studies on Big Data Architecture in the Transport Sector 

Architecture 
type 

Study Big Data technologies Reference 

Architecture 
for the 
batch 
processing 

A data platform for the highway traffic data  HBase, HDFS, Hive (Mian et al., 2014) 

Sipresk: A big data analytics platform for 
smart transportation  

HBase, HDFS (Khazaei et al., 2015) 

An architecture for big data processing on 
intelligent transportation systems: An 
application scenario on highway traffic 
flows  

Spark, mongoDB (Guerreiro et al., 2016) 

Application of big data in intelligent traffic 
system  

HDFS, Hive, Sqoop, 
Flume 

(Zeng et al., 2015) 

Architecture 
for the 
stream 
processing 

Big data analytics architecture for real-time 
traffic control  

Kafka, HDFS, NoSQL DB (Amini et al., 2017)
  

A cloud-based car parking middleware for 
IoT-based smart cities: Design and 
implementation  

Kafka, Storm, HBase, 
HDFS, Flume 

(Ganchev et al., 2014) 

 

4.1 Sipresk: A Big Data Analytic Platform for Smart Transportation  

Khazaei et al. proposed a Big Data architecture for an urban transportation application to gain 
insights into traffic patterns (Khazaei et al., 2015). The platform is called Sipresk architecture 
that is designed to be reliable, scalable, and adaptable to the changing operating conditions. 
This architecture consists of data layer, analytics layer, and management layer. It supports both 
static analysis (retrospective analysis) and streaming analysis (online analysis). This study 
validated several use cases such as finding average speed and congested segments in the major 
highways in Greater Toronto Area.  

The architecture will be discussed in terms of requirements, data management system, 
analytics system, monitoring system and usage. 

Requirements 

Shtern et al. classified the four types of urban transportation stakeholders namely: 
transportation manager, traffic engineer, planner, researcher, and policymaker (Shtern et al., 
2014). The requirements are different for each stakeholder. For instance, some are the 
functional requirements, the others are the non-functional requirements. The Sipresk 
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architecture considers both functional and non-functional requirements as follows: Scalability 
and Elasticity, Efficient range scans, Autonomic management, and High Availability.  

Data management system 

The Sipresk architecture consists of two core systems to meet the functional and the non-
functional requirements from the stakeholders. They are Data management system (Figure 7) 
and Analytics system (Figure 8). Data management system pools traffic data and then stores 
the data. The data is retrieved from Connected Vehicles and Smart Transportation(CVST) (CVST, 
2015) which is a platform to collect data from multiple sources. The raw data is stored in HBase 
or HDFS depending on the data type and size. On top of the raw data warehouse, Sipresk 
provides on-demand analytic storages (e.g., key-value, document, wide-column and/or graph 
stores). 

 

 

Figure 7: Data management platform in Sipresk (Khazaei et al., 2015) 

 

Analytics system 

The analytic system in Sipresk is based on Sahara project contributed by OpenStack foundation1. 
It is able to execute different data processing based on Apache Spark or Hadoop ecosystems. It 
consists of multiple Big Data tools as follows: Spark offers the distributed processing, R allows 
developers to implement the codes for the analytics, GraphX provides the iterative graph 
processing at large scale and more.  

 

                                                      

1 http://www.openstack.org 
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Figure 8: Analytic system in Sipresk (Khazaei et al., 2015) 

 

Monitoring system 

Finally, another system is designed to monitor the condition of the two core systems. The high 
level of the implemented architecture is shown in Figure 9. It is a monitoring that measures the 
CPU utilization in real-time, and it adds more resources (more worker nodes) if the system is 
not in a healthy condition (e.g., CPU utilization is higher than 60% for 2 minutes). On top of the 
health monitoring, it also supports the periodical model deployment.  

 

 

Figure 9: High level architecture of Sipresk (Khazaei et al., 2015) 

 

Usage 

An application of traffic congestion in Greater Toronto Area is deployed in the Sipersk 
architecture for 16 months (the year of 2014 and first 4 months of 2015). It investigates the 
major highways of Toronto and characterizes the average speed and occupancy. Figure 10 is 
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one example of the application usage. It shows the congested places on the map. The result is 
aggregated for Wednesdays in October 2014 during evening rush hours. 

 

 

Figure 10: Congested points in 401 West (Khazaei et al., 2015) 

 

4.2 Big Data Analytics Architecture for Real-Time Traffic Control 

Amini et al. (2017) proposed and evaluated a high-level Intelligent Transportation System (ITS) 
architecture with a use case of the real-time traffic control. The proposed architecture is a 
scalable distributed computing platform and end-to-end pipeline to process data on-the-fly. It 
consists of numerous state-of-the-art Big Data technologies such as Kafka, HDFS, and NoSQL. 

Requirements 

The proposed architecture accommodates a number of requirements. Seven identified 
requirements are divided into two groups:  system stability and analytics. For instance, the 
requirements of the former group are the architecture should be scalable and faults tolerant, 
on the other hand, the requirements of the latter group are the architecture should support 
two-speed analytics (batch and streaming analysis), the deterministic setting for analytics, 
reusable analytics, and integration of multiple data sources.   

Architecture 

In order to satisfy the requirements above, Amini and coauthors proposed a platform consisting 
of Big Data technologies. The high-level architecture is depicted in Figure 11. The core 
components of this architecture are the messaging technology called Kafka and its publisher 
and subscriber.  ITS actors (i.e. drivers, detectors, actuators, operators, etc.) are tightly involved 
with Kafka by producing and consuming the streaming data.  
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Figure 11: Proposed architecture for real-time traffic control 

 

Usage 

The application running in the proposed platform is a hard shoulder opening system. The 
application determines whether the hard shoulder lane should open or close. Data are collected 
from the 3 km segment of A9 freeway in the north of Munich. Eight data sources are collected 
namely: vehicle speed, vehicle position, time, nearby vehicles number, obstacle number, lane 
occupancy, and mean speed of the lane. The decision is carried out based on these real-time 
data. Figure 12 is an example of visualization that shows the traffic condition. 

 

 

Figure 12: Speed information with color indicators (green means fast, red slow) (Krajzewicz et 
al., 2012) 
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5 Benchmarking 

Widespread Big Data benchmarks will be described in three main categories – dealing with 
analytics, streaming data, and transportation use cases. This chapter has been published in 
(Ivanov et al., 2018), (Zicari et al., 2016), and (Ivanov et al., 2015) and selectively reprinted here 
with permission of the authors.  

A benchmark is (Andersen and Pettersen, 1995): “A predefined position, used as a reference 
point for taking measures against”. Jim Gray (Gray, 1992) describes the benchmarking process 
as follows:”this quantitative comparison starts with the definition of a benchmark or workload. 
The benchmark is run on several different systems, and the performance and price of each 
system are measured and recorded. Performance is typically a throughput metric 
(work/second) and the price is typically a five-year cost-of-ownership metric. Together, they 
give a price/performance ratio.” In short, we define that a software benchmark is a program 
used for comparison of software products/tools executing on a pre-configured hardware 
environment according to a set of predefined user defined benchmark specification.  

Choosing the right big data platform and configuring it properly to provide the best 
performance for a hosted application is not a trivial task. Especially with the new big data 
applications, there are requirements that make the platforms more complex, more 
heterogeneous, and harder to monitor and maintain. The role of benchmarking becomes even 
more relevant as a method for evaluating and understanding better the internals of a particular 
platform. Furthermore, benchmarks are used to compare different systems using both technical 
and economic metrics that can guide the user in the process of finding the right platform that 
fits their needs. 

Nevertheless, the user has to first identify his needs and then choose the ideal Big Data 
Benchmarks. Big Data Benchmarks are a good way to optimize and fine-tune the performance 
in terms of processing speed, execution time or throughput of the big data system. A 
benchmark can also be used to evaluate the availability and fault-tolerance of a big data system. 
Especially for distributed big data systems, a high availability is an important requirement. 

5.1 Benchmarking Organizations 

5.1.1 TPC 

The TPC (Transaction Processing Performance Council) (TPC, 2018) is a non-profit corporation 
operating as an industry consortium of vendors that define transaction processing, database, 
and big data system benchmarks. TPC was formed on August 10, 1988, by eight companies 
convinced by Omri Serlin (TPC, 2018). In November 1989 was published the first standard 
benchmark TPC-A with 42-pages specification (Gray, 1992). By late 1990, there were 35 
member companies. As of 2017, TPC has 21 company members and three associate members. 
There are six obsolete benchmarks (TPC-A, TPC-App, TPC-B, TPC-D, TPC-R and TPC-W), 14 active 
benchmarks TPC-C (Raab, 1993), TPC-E (Hogan, 2009), TPC-H (Poess and Floyd, 2000), TPC-DS 
(Poess et al., 2017; Poess et al, 2007; Nambiar and Poess 2006), TPC-DI (Poess et al., 2014), TPC-
V (Sethuraman and Taheri, 2010), TPCx-HS (Nambiar, 2014), TPCx-BB (Ghazal et al., 2013) and 
two common specifications (Pricing and Energy) used across all benchmarks.  
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5.1.2 SPEC 

The SPEC (Standard Performance Evaluation Corporation) (SPEC, 2018) is a non-profit 
corporation formed to establish, maintain and endorse standardized benchmarks and tools to 
evaluate performance and energy efficiency for the newest generation of computing systems. 
It was founded in 1988 by a small number of workstation vendors. The SPEC organization is an 
umbrella organization that covers four groups (each with their own benchmark suites, rules, 
and dues structure): the Open Systems Group (OSG), the High-Performance Group (HPG), the 
Graphics and Workstation Performance Group (GWPG) and the SPEC Research Group (RG).  

5.1.3 STAC 

The STAC (Securities Technology Analysis Center) Benchmark Council (STAC, 2018) consists of 
over 300 financial institutions and more than 50 vendor organizations whose purpose is to 
explore technical challenges and solutions in financial services and to develop technology 
benchmark standards that are useful to financial organizations. Since 2007, the council is 
working on benchmarks targeting Fast Data, Big Data and Big Compute workloads in the finance 
industry.  

5.2 Big Data Analytics Benchmarks 

This section presents Analytics Big Data benchmarks that are most frequently referenced in 
current literature. They were developed to stress test and evaluate Big Data systems such as 
the Hadoop framework and its extensions into the open source ecosystem.  

AMP Lab Big Data Benchmark 

AMP Lab Benchmark (AMP Lab, 2013) measures the analytical capabilities of data warehousing 
solutions. This benchmark currently provides quantitative and qualitative comparisons of five 
data warehouse systems: RedShift, Hive, Stinger/Tez, Shark, and Impala. Based on Pavlo’s 
Benchmark (Pavlo et al., 2009; Stonebraker et al. 2010) and HiBench (Huang et al., 2010; Intel, 
2015), it consists of four queries involving scans, aggregations, joins, and user-defined functions 
(UDFs). It supports different data sizes and scaling to thousands of nodes. 

BigBench 

BigBench (Baru et al., 2013; Ghazal et al., 2013; BigBench, 2015) is an end-to-end Big Data 
benchmark that represents a data model simulating the volume, velocity, and variety 
characteristics of a Big Data system, together with a synthetic data generator for structured, 
semi-structured, and unstructured data. The structured part of the retail data model is adopted 
from the TPC-DS benchmark and further extended with semi-structured (registered and the 
guest user clicks) and unstructured data (product reviews). The BigBench raw data volumes can 
be dynamically changed based on a scale factor. The simulated workload is based on a set of 30 
queries covering the different aspects of Big Data analytics proposed by McKinsey (Manyika et 
al., 2011). The benchmark consists of four key steps: (i) System setup; (ii) Data generation; (iii) 
Data load; and (iv) Execute application workload. A reference implementation (BigBench, 2015) 
for the Hadoop ecosystem is available. Currently, the TPC committee is working towards 
standardizing it as a TPC Big Data benchmark (Baru et al., 2014). 
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BigDataBench 

BigDataBench (Wang et al., 2014) is an open source Big Data benchmark suite (ICT 
BigDataBench, 2015) consisting of 14 data sets and 33 workloads. Six of the 14 data sets are 
real-world based, generated using the Big Data Generator Suite (BDGS) (Ming et al. 2013) data 
generator. The generated data types include text, graph, and table data, and are fully scalable. 
According to the literature, it is unclear of what the upper bound of the data set sizes is. The 
remaining eight datasets are generated from a small seed of real data and are not scalable yet. 
The 33 workloads are divided into five common application domains: search engine, social 
networks, electronic commerce, multimedia analytics, and bioinformatics. BigDataBench has 
many similarities with the DCBench (ICT DCBench, 2013), a benchmark suite developed to test 
data center workloads. This is a rapidly evolving benchmark. Please check the official website 
for current updates. 

BigFrame 

BigFrame (Kunjir et al. 2014) is a benchmark generator offering a benchmarking-as-a-service 
solution for Big Data analytics. While the latest version together with documentation is 
available on GitHub (BigFrame, 2013), changes are still being made to the benchmark generator. 
The benchmark distinguishes between two different analytics workload, 1) one-analytics and 2) 
real-time analytics. It consists of structured data (Sales, Item, Customer and Promotion tables) 
adapted from the TPC-DS benchmark and semi-structured JSON data types containing 
unstructured text.  

The current version of the benchmark provides data models for two types of workloads: 
historical and continuous query. The data in the historical’s processed at typical data warehouse 
rates, e.g., week, whereas the continuous work is processed in real-time. It enables real-time 
decision making based on instant sales and user feedback updates. The development of mixed 
workloads combining relational, text and graph data is also in progress. 

CloudRank-D 

CloudRank-D (Cuo et al., 2012; ICT CloudRank 2013) is a benchmark suite for evaluating the 
performance of cloud computing systems running Big Data applications. The suite consists of 
13 representative data analysis tools, which are designed to address a diverse set of workload 
data and computation characteristics (i.e., data semantics, data models, and data sizes, the ratio 
of the size of data input to that of data output). The benchmark suite reports two 
complementary metrics: data processed per second (DPS) and data processed per Joule (DPJ). 

CloudSuite 

CloudSuite (Ferdman et al., 2012) is a benchmark suite consisting of both emerging scale-out 
workloads and traditional benchmarks. The goal of the benchmark suite is to analyze and 
identify key inefficiencies in the processor's core micro-architecture and memory system 
organization when running today's cloud workloads. Table 2 summarizes the workload 
categories as well as the applications that were actually benchmarked. 
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GridMix 

GridMix (Apache Software Foundation GridMix, 2013) is a benchmark suite for Hadoop clusters, 
which consists of a mix of synthetic jobs. The benchmark suite emulates different users sharing 
the same cluster resources and submitting different types and number of jobs. This includes 
also the emulation of distributed cache loads, compression, decompression, and job 
configuration in terms of resource usage. In order to run the GridMix benchmark a trace 
describing the mix of all running MapReduce jobs in the given cluster has to be recorded. 

Hadoop Workload Examples 

Since its first version, the Hadoop framework has included several ready to use MapReduce 
sample applications. They are located in the Hadoop-examples-version.jar. These applications 
are commonly used to both learn and benchmark Hadoop. The most popular ones include 
WordCount, Grep, Pi, and Terasort. The Hibench suite, which is briefly described in the next 
sub-section, also includes these example workloads. Grep Task Grep (Apache Software 
Foundation Grep, 2013) is a standard MapReduce program that is included in the major Hadoop 
distributions. The program extracts strings from text input, matches regular expressions against 
those strings and counts their number of occurrences. More precisely it consists of two 
MapReduce jobs running in sequence. The first job counts how many times a matching string 
occurred, and the second job sorts the matching strings by their frequency and stores the 
output in a single output. Pi (Apache Hadoop, 2015) is a MapReduce program computing the 
exact binary digits of the mathematical constant Pi. It uses multiple map tasks to do the 
computation and a single reducer to gather the results of the mappers. Therefore, the 
application is more CPU bound and produces very little network and storage I/O. 

HiBench 

HiBench (Huang et al., 2010; Intel, 2015) is a comprehensive benchmark suite for Hadoop 
consisting often of workloads including both synthetic micro-benchmarks and real-world 
applications. HiBench features several ready-to-use benchmarks from 4 categories: 
microbenchmarks, web search, machine learning, and HDFS benchmarks. The HiBench suite 
evaluates and characterizes the MapReduce framework in terms of speed (job running time) 
and throughput (the number of tasks completed per minute) and the HDFS in terms of 
bandwidth, system resource utilization, and data access patterns. The following list briefly 
describes the benchmarks currently implemented. For a complete description please refer to 
(Huang et al., 2010; Intel, 2015). 

LinkBench 

LinkBench (Armstrong et al., 2013) is a benchmark, developed by Facebook, using the synthetic 
social graph to emulate social graph workload on top of databases such as MySQL. 

MRBench 

MRBench (Kim et al. 2008) is a benchmark evaluating the processing of business-oriented 
queries and concurrent data modifications on MapReduce systems. It implements the 22 
queries of the TPC-H decision support system benchmark directly in map and reduce 
operations. The MRBench supports three configuration options: database size and a number of 
map and reduce tasks. 
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MapReduce Benchmark Suite (MRBS) 

MRBS (Sangroya et al., 2012a; Sangroya et al., 2012b; MRBS, 2013) is a comprehensive 
benchmark suite for evaluating the performance of MapReduce systems. The high-level metrics 
reported by the benchmark are client request latency, throughput, and cost. Additionally, low-
level metrics like the size of read-/written data, the throughput of MR jobs, and tasks are also 
reported. The MRBS implements a service that provides different types of operations, which 
can be requested by clients. Two execution modes are supported: interactive mode and batch 
mode. The benchmark runs consists of three phases dynamically configurable by the end-user: 
warm-up phase, run-time phase, and slow-down phase. The user can specify the number of 
runs and the different aspects of load: dataload and workload. The dataload is characterized by 
the size and the nature of the data sets used as inputs for a benchmark, and the workload is 
characterized by the number of concurrent clients and the distribution of the request type. 
Domain Application Recommendation Benchmark based on real movie database Business 
Intelligence TPC-H Bioinformatics DNA sequencing Text Processing Search patterns, word 
occurrence and sorting on randomly generated text files Data Mining Classifying newsgroup 
documents into categories, canopy clustering operations  

Pavlo's Benchmark (CALDA) 

Pavlo's Benchmark (Pavlo et al., 2009; Sherif S., 2015; Apache Hadoop, 2015) consists of five 
tasks defined as SQL queries among which is the original MapReduce Grep task, which is a 
representative of most real user MapReduce programs. The benchmark was developed to 
specifically compare the capabilities of Hadoop with those of commercial parallel Relational 
Database Management Systems (RDBMS). Although the reported results do not favor the 
Hadoop platform, the authors remain optimistic that MapReduce systems will coexist with 
traditional database systems. Table 5 summarizes all types of tasks in Pavlo's Benchmark and 
their complimentary SQL statements. 

PigMix 

PigMix/PigMix2 (Baru et al., 2013) is a set of 17 queries specifically created to test the 
performance of Pig systems. Specifically, it tests the latency and scalability of Pig systems. The 
queries, written in Pig Latin (Olston et al., 2008), test different operations like data loading, 
different types of joins, group by clauses, sort clauses, as well as aggregation operations. The 
benchmark includes eight data sets, with varying schema attributes and sizes, generated using 
the DataGeneratorHadoop (Apache Hadoop DataGeneratorHadoop, 2015) tool. 
PigMix/PigMix2 are not considered true benchmarks as they lack some of the main benchmark 
elements, such as metrics. 

PRIMEBALL 

PRIMEBALL (Ferrarons et al. 2013) is a novel and unified benchmark specification for comparing 
the parallel processing frameworks in the context of Big Data applications hosted in the cloud. 
It is implementation- and technology-agnostic, using a relational news hub called New Pork 
Times, based on a popular real-life news site. Included are various use-case scenarios made of 
both queries and data-intensive batch processing. The raw data set is fetched by a crawler and 
consists of both structured XML and binary audio and video, which can be scaled by a pre-
defined scale factor (SF) to 1 PB. The benchmark specifies two main metrics: throughput and 
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price performance. The throughput metric reports the total time required to execute a 
particular scenario. The price performance metric is equal to the throughput divided by the 
price, where the price is defined by the specific cloud provider and depends on multiple factors. 
Additionally, the benchmark specifies several relevant properties characterizing cloud 
platforms, such as 1) scale-up; 2) elastic speedup; 3) horizontal scalability; 4) latency; 5) 
durability; 6) consistency and version handling; 7) availability; 8) concurrency and other data 
and information retrieval properties. 

Statistical Workload Injector for MapReduce (SWIM)  

SWIM (Chen et al., 2011; Chen et al., 2012; Yanpei, 2013) is a benchmark, which takes a different 
approach in the testing process. It consists of a framework, which is able to synthesize 
representative workload from real MapReduce traces taking into account the job submit time, 
input data size, and shuffle/input and output/shuffle data ratio. The result is a synthetic 
workload, which has the exact characteristics of the original workload. Similarly, the benchmark 
generates artificial data. Then the workload executor runs a script which takes the input data 
and executes the synthetically generated workload (jobs with specified data size, data ratios, 
and simulating gaps between the job executions). Additionally, the reproduced workload 
includes a mix of job submission rates and sequences and a mix of common job types. Currently, 
the benchmark includes multiple real Facebook traces and the goal is to further extend the 
repository by including new real workload traces. 

TPC-H 

TPC-H (TPC Benchmark H, 2014) is the de facto benchmark standard for testing data warehouse 
capability of a system. Instead of representing the activity of any particular business segment, 
TPC-H models any industry that manages, sells, or distributes products worldwide (e.g., car 
rental, food distribution, parts, suppliers, etc.). The benchmark is technology-agnostic. The 
purpose of TPC-H is to reduce the diversity of operations found in a typical data warehouse 
application, while retaining the application's essential performance characteristics, namely: the 
level of system utilization and the complexity of operations. The core of the benchmark is 
comprised of a set of 22 business queries designed to exercise system functionalities in a 
manner representative of complex decision support applications. These queries have been 
given a realistic context, portraying the activity of a wholesale supplier to help the audience 
relate intuitively to the components of the benchmarks. It also contains two refresh functions 
(RF1, RF2) modeling the loading of new sales information (RF1) and the purging of stale or 
obsolete sales information (RF2) from the database. The exact definition of the workload can 
be found in the latest specification (TPC Benchmark H, 2014). It was adapted very early in the 
development of Hive and Pig, and implementations of the benchmark are available for both. In 
order to publish a TPC-H compliant performance result, the system needs to support full ACID 
(Atomicity, Consistency, Isolation, and Durability). 

TPC-DS 

TPC-DS (TPC Benchmark DS, 2015) is a decision support benchmark that models several 
generally applicable aspects of a decision support system, including queries and data 
maintenance. It takes the marvels of TPC-H and, now obsolete TPC-R, and fuses them into a 
modern DSS benchmark. 
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While TPC-DS may be applied to any industry that must transform operational and external data 
into business intelligence, the workload has been granted a realistic context. It models the 
decision support tasks of a typical retail product supplier. The goal of selecting a retail business 
model is to assist the reader in relating intuitively to the components of the benchmark, without 
tracking that industry segment so tightly as to minimize the relevance of the benchmark. The 
schema, an aggregate of multiple star schemas, contains essential business information, such 
as detailed customer, order, and product data for the classic sales channels: store, catalog, and 
the Internet. Wherever possible, real-world data are used to populate each table with common 
data skews, such as seasonal sales and frequent names. In order to realistically scale the 
benchmark from small to large datasets, fact tables scale linearly while dimensions scale sub-
linearly. The benchmark abstracts the diversity of operations found in an information analysis 
application while retaining essential performance characteristics. As it is necessary to execute 
a great number of queries and data transformations to completely manage any business 
analysis environment, TPC-DS defines 99 distinct SQL-99 (with Online Analytical Processing 
(OLAP) amendment) queries and twelve data maintenance operations covering typical DSS like 
query types such as ad-hoc, reporting, iterative (drill down/up), and extraction queries and 
periodic refresh of the database. The metric is constructed in a way that favors systems that 
can overlap query execution with updates (trickle updates). As with TPC-H full ACID 
characteristics are required. Implementation with more than 50 sample queries is available for 
Hive (Apache Software Foundation: TPC-H and TPC-DS for Hive, 2015). 

TPCx-HS 

This section presents the TPCx-HS benchmark, its methodology and some of its major features 
as described in the current specification (version 1.3.0 from February 19, 2015) [56]. The TPCx-
HS was released in July 2014 as the first industry's standard benchmark for Big Data systems 
(Nambiar et al., 2014). It stresses both the hardware and software components including the 
Hadoop run-time stack, Hadoop File System, and MapReduce layers. The benchmark is based 
on the TeraSort workload (Apache Hadoop: TPC Express Benchmark HS, 2015), which is part of 
the Apache Hadoop distribution. Similarly, it consists of four modules: HSGen, HSDataCkeck, 
HSSort, and HSValidate. The HSGen is a program that generates the data for a particular Scale 
Factor (see Clause 4.1 from the TPCx-HS specification) and is based on the TeraGen, which uses 
a random data generator. The HSDataCheck is a program that checks the compliance of the 
dataset and replication. The HSSort is a program, based on TeraSort, which sorts the data into 
a total order. Finally, HSValidate is a program, based on TeraValidate, that validates the output 
is sorted. A valid benchmark execution consists of separate phases which have to be run 
sequentially to avoid any phase overlapping. Additionally, Table 7 provides the exact description 
of each of the execution phases. The benchmark is started by the <TPCx-HS-master> script and 
consists of two consecutive runs, Run1 and Run2. No activities except the system cleanup are 
allowed between Run1 and Run2. The completion times of each phase/module (HSGen, HSSort 
and HSValidate) except HSDataCheck are currently reported. An important requirement of the 
benchmark is to maintain 3-way data replication throughout the entire experiment. The 
benchmark reports the total elapsed time (T) in seconds for both runs. This time is used for the 
calculation of the TPCx-HS performance metric also abbreviated with HSph@SF. The run that 
takes more time and results in lower TPCx-HS performance metric is defined as the performance 
run. On the contrary, the run that takes less time and results in TPCx-HS performance metric is 
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defined as the repeatability run. The benchmark reported performance metric is the TPCx-HS 
performance metric for the performance run. The scale factor defines the size of the dataset, 
which is generated by HSGen and used for the benchmark experiments. In TPCx-HS, it follows a 
stepped size model. Table 8 summarizes the supported scale factors, together with the 

Yahoo! Cloud Serving Benchmark (YCSB) 

YCSB (Cooper et al., 2015; Patil et al, 2011) a benchmark designed to compare emerging cloud 
serving systems like Cassandra, HBase, MongoDB, Riak, and many more, which do not support 
ACID. The benchmark consists of a workload generator and a generic database interface, which 
can be easily extended to support other relational or NoSQL databases. YCSB provides a core 
package of six pre-defined workloads A-F, which simulate a cloud Online Transaction Processing 
(OLTP) application (read and update operations). The reported metrics are execution time and 
throughput (operations per second). The benchmark is open source and available on GitHub 
(Yahoo: YCSB, 2015). 

5.3 Streaming Benchmarks 

StreamBench 

StreamBench (Lu, 2014) is a benchmark suite containing seven different micro-benchmark 
programs. These are Identity, Sample, Projection, Grep, Wordcount, DistinctCount, and 
Statistics. It consists of four workload suites targeting different technical characteristics of the 
streaming systems. The simulated applications are using data from real-time weblog processing 
and network traffic monitoring domain. 

Yahoo Streaming Benchmark (YSB) 

The Yahoo Streaming benchmark (Alexandrov et al., 2013; AMP Lab: Big Data Benchmark, 
2013), a streaming benchmark for an end-to-end processing pipeline based on Apache Kafka 
(distributed streaming platform), Redis 1  (key-value database) and the three computation 
engines Flink2, Storm3 , and Spark Streaming is presented. The idea of this end-to-end pipeline 
is, to simulate a real-world advertisement analytics pipeline. Their results show, that Storm and 
Flink have a lower latency compared to Spark. Spark was, however, able to handle the higher 
throughput. In contrast to this streaming benchmark, the application benchmark presented by 
us in this paper uses a more adaptive statistical model and uses the Spark machine learning 
library for a more complex processing. 

HiBench 

HiBench (Huang et al., 2010; Intel, 2018) developed by Intel, is a comprehensive benchmark 
suite for Hadoop that initially was consisting of ten workloads including both synthetic micro-
benchmarks and real-world applications. Recently, it was extended with four streaming micro-
benchmarks listed in Table 8  and implemented for Kafka, Spark, Storm, Flink, and Gearpump. 
All four workloads are executed in a similar manner: the streaming app reads data from Kafka, 

                                                      

1 Redis data store: https://redis.io/ 
2 Apache Flink: https://flink.apache.org/ 
3 Apache Storm: http://storm.apache.org/ 
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process the data and writes it back to Kafka, labeling each record with a timestamp. The 
benchmarks report the elapsed time (time difference between reading a record from Kafka and 
writing the result back to Kafka).  

 

Table 8: Streaming Micro-benchmarks in HiBench 

Workload Description 

Identity This workload reads input data from Kafka and then writes the result to Kafka immediately, 
there is no complex business logic involved. 

Repartition This workload reads input data from Kafka and changes the level of parallelism by creating 
more or fewer partitions tests. It tests the efficiency of data shuffles in the streaming 
frameworks. 

Stateful 
Wordcount 

This workload counts words cumulatively received from Kafka every few seconds. This tests 
the stateful operator performance and Checkpoint/Acker cost in the streaming frameworks. 

Fixwindow The workloads perform a window based aggregation. It tests the performance of window 
operation in the streaming frameworks. 

 

SparkBench 

SparkBench1 (version 2.0) (Li et al., 2015) is another Spark specific benchmark suite developed 
by IBM, which provides representative workloads in four categories as listed in Table 9. The 
purpose of the benchmark suite is to help users evaluate and analyze the tradeoffs between 
different system designs, guide the optimization of workload configurations and cluster 
provisioning for Spark deployments. SparkBench reports two metrics: job execution time 
(seconds) and data process rate (MB/second). The job execution time measures the execution 
time of each workload, whereas the data process rate is defined as the input data size divided 
by the job execution time.  

 

Table 9: SparkBench Workloads 

Category Workload Input Dataset Library/Tool 

Machine Learning Logistic Regression Wikipedia MLLib 

Support Vector Machine Wikipedia 

Matrix Factorization Amazon Movie Review 

Graph Computation PageRank Google Web Graph GraphX 

SVD++  Amazon Movie Review 

TriangleCount Amazon Movie Review 

SQL Query Hive E-commerce Hive-on-Spark 

RDDRelation E-commerce SparkSQL 

Streaming 
Application 

Twitter Twitter DStream 

PageView PageView DataGen 

 

                                                      

1 https://github.com/CODAIT/spark-bench 
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5.4 Benchmarks in the Transport Sector 

This section introduces three benchmarks in the transport sector. One may consider taking this 
benchmark as a best practice implementation if it covers the same use case scenario of what 
one plans to implement. The overview of three benchmarks is depicted in Table 10. The type of 
benchmarks and the data characteristics which is described in the LeMO deliverable (Hee et al, 
2018). 

Table 10: Existing benchmarks in the transport sector 

Benchmark name Type Data Characteristics 
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RIoTBench x x      x  

Linear Road   x x      

ShenZhen (SZTS) x   x      

Linear Road: A Stream Data Management Benchmark  

(Arasu, 2004) specifies the Linear Road Benchmark for Stream Data Management Systems 
(SDMS). The application running on top of this benchmark is called Linear Road. It is a tolling 
system that uses variable tolling (Yang, 1996), which can dynamically calculate toll charges 
depending on multiple factors as traffic congestion and accident. SDMS is able to process 
streaming data, which are the common data source in the transport sector. The goal of this 
benchmark is to compare the performance of SDMS’ relative to each other and to conventional 
database systems. The results show that a dedicated SDMS can outperform a Relational 
Database by at least a factor of 5 on streaming data applications. 

ShenZhen transportation system (SZTS): a novel big data benchmark suite 

ShenZhen Transportation System (SZTS) (Xiong, 2016) is a big data Hadoop benchmark suite 
comprised of real-life transportation analysis applications with real-life input data sets from 
Shenzhen in China. SZTS targets a real-life application domain unlike other Hadoop benchmark 
suites (e.g. HiBench or CloudRank-D) consist of generic algorithms with synthetic inputs. The 
workloads of SZTS are across several layers namely: the microarchitecture level, the operating 
system (OS) level, and the job level.  

RIoTBench 

RIoTBench (Shukla et al., 2017) is a Real-time IoT Benchmark suite, consisting of 27 IoT micro-
benchmarks and 4 real-application benchmarks reusing the micro-benchmark components, 
along with performance metrics. The goal of the benchmark suite is to evaluate the efficacy and 
performance of Distributed Stream Processing Systems (DSPS) in cloud environments. The 
benchmark is currently implemented on Apache Strom and available online. 
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5.5 Recommendations 

Utilizing an existing Big Data benchmarking has many advantages. The major benefit is the 
reusability. One can reuse the benchmark specification and guidelines on how to use the 
benchmark and how to stress specific technology functionalities in the case of micro-
benchmarks. For instance, if one is new to a particular Big Data technology, the best approach 
will be to refer to an existing Big Data benchmark implemented in the technology. By doing so, 
you can learn how to deploy, use and understand if it will be the best choice for your application. 
Similarly, if a benchmark covers the same domain or the same use case scenario of what one 
plans to implement, one can use it as a best practice implementation and investigate potential 
problems before starting own implementation. 
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6 Custom Benchmarking 

Numerous benchmarks are available as shown in Chapter 5. However, benchmarks and Big Data 
technologies are changing fast, thus, it is hard to keep an up-to-date overview of all emerging 
benchmarks. In addition, often missing guidelines and user documentation are the main factors 
that hinder the use of the existing benchmark. In other cases, the official documentation is well 
written, but there is no publicly available implementation. These push developers and 
practitioners to develop their own benchmarking method. Thus, we propose a guideline on how 
to set up a Big Data application and how to convert it into a benchmark workload.  

6.1 Application: road traffic condition in New York City (NYC) 

This section presents an implementation of a system that supports the better transport 
planning as the demand for the Intelligent Transportation Systems increases. For instance, 
vehicle control systems and road transportation systems are the most popular Big Data 
application according to the two studies (An et al., 2011; Zhang et al., 2011). Similarly, Gartner 
predicted that a quarter billion connected cars will be on the road, becoming one of the major 
elements in the Internet of Things by 2020 (Gartner, 2015). The following sections explain the 
proposed application, starting with the application requirements, data description, data 
modeling, used architecture and the outputs of the application.  

6.1.1 Requirements 

The goal of the application is to provide better services for drivers and passengers on the one 
hand, and for the city to be aware of the traffic condition considering time information on the 
other hand. For instance, the application answers questions such as: “which hour of a day has 
the most pickup call in NYC?” or “which places of NYC have the most taxi pickup demands over 
24 hours?” This is the descriptive analytics which provides the answer to the question “What 
happened?” It aims to offer a better understanding of the given data. 

6.1.2 Data description 

Uber data is publicly available1 and the repository contains more than 4.5 million taxi pickups. 
The geographic coverage is the New York City and the temporal coverage is 6 months from April 
to September 2014. It consists of four attributes namely:  Date/Time (the date and time of the 
Uber pickup), Lat (the latitude of the Uber pickup), Lon (the longitude of the Uber pickup) and 
Base (the TLC2 base company code affiliated with the Uber pickup). An example record is: [2014-
04-01 00:00:00, 40.729, -73.9422, B02598] 

6.1.3 Data modeling 

There are numerous methodologies that can be applied for the descriptive analytics. The case 
study in this section focuses on cluster analysis which is one of the most well-known methods 
for the descriptive analytics. Specifically, the application utilizes one of the clustering algorithms 

                                                      

1 http://data.beta.nyc/dataset/uber-trip-data-foiled-apr-sep-2014 
2 http://www.nyc.gov/html/tlc/html/industry/base_and_business.shtml 
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called K-Means (MacQueen, 1967). K-Means constructs a subset of an input dataset into a 
predefined number of clusters. The computational complexity of K-Means is known as O(n2) 
with n data samples.  

6.1.4 Architecture 

The proposed architecture is inspired by the Lambda architecture (Marz, 2012). The 
architecture incorporates numerous Big Data technologies running on Apache Hadoop (section 
3.3 and 3.4) as Hadoop Ecosystem has become the de facto platform for Big Data. The applied 
technologies are Kafka, Spark, Spark MLlib, Spark Streaming, HDFS, Python and Python libraries. 
Figure 13 illustrates that the proposed architecture with two layers. It is able to store and 
process a large amount of data in the distributed system. This architecture (in the color of red) 
is able to cope with the challenges of velocity and volume. In addition, the batch layer (in the 
color of yellow) can be used as a standalone. It can be executed in an independent manner to 
obtain a static model. 

For our case study, Uber taxis generate the streaming data of the pick-up call. Kafka (the 
messenger) then ingests the data (the data producer) on the fly, and it pushes the data into two 
consumer components namely: Spark Streaming and HDFS. The data stored in HDFS are 
periodically triggered to create a model (the K-Means model). Meanwhile, this periodically 
updated model is deployed to the Spark Streaming. The former is called the static modeling, 
while the latter is called adaptive modeling. The Spark Streaming assigns new arriving data to 
the deployed model and then the visualization component takes the output to plot the taxi 
pickup data on the map.  

 

Figure 13: Architecture for Adaptive modeling with two layers 
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6.1.5 Results and usage 

Figure 14 is the K-Means visualization of Uber pickup data in August 2014. A data point on the 
map represents every pickup location of Uber taxis. The number of the centroid is set as eight 
(parameter k = 8), thus a data point is highlighted in one of eight colors corresponding to the 
centroid which the data point belongs to. Note that the proposed architecture is able to 
generate numerous outputs because it supports the adaptive modeling which is refreshed 
based on the predefined time interval. Thus, the position of centroids is continuously changing 
corresponding to the periodical deployment of the static model. Figure 15 shows the summary 
view of pickup counts for each cluster. The cluster is shown on the x-axis, the y-axis is the count. 
Most taxis are picked up in the Manhattan borough where is the most densely populated of 
New York City.  

 

 

Figure 14: K-means visualization of Uber pickup data in NYC 

 

 

Figure 15: Uber pickups count for each cluster  
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Figure 16 is another usage of the same Uber data with K-Means model. This output is generated 
by MapR and this software company is one of the major Hadoop distribution providers. The x-
axis shows the hour, the y-axis is the count. This visualization shows that which hours of the day 
and which cluster the highest number of pickups had. Figure 15 and Figure 16 can provide the 
actionable value to the taxi driver and the city planner.  

 

Figure 16: Number of pickups over 24 hours for each cluster 1 

 

6.2 Turning it into a benchmark 

This section converts the proposed application into a benchmark workload. In other words, it is 
an application benchmark with focus on the Big Data technologies. In particular, the 
transformed benchmark is designed to analyze the Spark and Spark MLlib which are shown as 
the modeling component in Figure 13. Spark is chosen to be analyzed because Spark is the de 
facto choice for stream processing and machine learning (Venugopal & Gualtieri, 2018). Despite 
Spark users do not need to know the internal procedure behind the API, our application 
benchmark takes a deep look into each API function call and tries to identify the bottleneck at 
the function level. 

6.2.1 Input datasets 

Five data sets are prepared to test the experiment. The entire temporal coverage is 6 months 
from April to September 2014. And the data description is explained in section 6. 

1. (54.8 MB),   2 months  (2014/04/01 - 2014/05/31) 
2. (84.7 MB),   3 months  (2014/04/01 - 2014/06/30) 
3. (120.7 MB), 4 months (2014/04/01 - 2014/07/31) 
4. (158.0 MB), 5 months (2014/04/01 - 2014/08/31) 
5. (204.3 MB), 6 months (2014/04/01 - 2014/09/30) 

                                                      

1 https://mapr.com/blog/monitoring-real-time-uber-data-using-spark-machine-learning-streaming-and-kafka-

api-part-1/ 
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6.2.2 Setup 

The experiments were performed on a cluster consisting of 4 nodes connected directly through 
1GBit Netgear switch. All 4 nodes are Dell PowerEdge T420 servers. The master node is 
equipped with 2x Intel Xeon E5-2420 (1.9GHz) CPUs, on the other hand, the worker nodes are 
equipped with 1x Intel Xeon E5-2420 (2.20GHz) CPU. Besides the CPU, other settings are the 
same. Each server is equipped with 6 cores, 12 Threads, 32GB of RAM and 1TB (SATA, 3.5 in, 
7.2K RPM, 64MB Cache) hard drive. Note that only two worker nodes were used to run the 
experiments because of the data size.  

6.2.3 Metrics 

The benchmark metric is mean to evaluate and compare the performance of multiple software 
or hardware systems stressed with the same benchmark workload. Throughput and Execution 
time are used in almost every benchmark, while QphH@SF or QphDS@SF are specific metrics 
defined for a particular benchmark. Table 11 lists six common benchmark metrics suitable 
especially for stream processing. There are two Latency metrics namely: Execution time and 
End-to-end execution. The former is the elapsed time in seconds for a function, while the latter 
varies in definition depending on the components that are part of the system under test. For 
example, in the case of stream processing, it should also include the time taken from data/event 
creation until the stream processing platform emits the result. Because of the simplicity of our 
scenario, we report only Execution time. 

 

Table 11: Six benchmark metrics 

Metric Name Description 

Execution Time Execution Time (Latency) is the time between the start and end of the query 
execution against the streaming data. 

End-to-end execution The End-to-end execution (Latency) include the network and queuing times from 
sending to receiving a tuple and completely processing it until the final result is 
outputted. 

Throughput Throughput is the rate of successfully delivered resources per time interval and is 
measured in messages processed per second.  Example from TPC-H:  
Throughput@Size = S ∗ 22/(TS /3600) ∗SF  where S = number of query streams, TS 
= elapsed time of test (in seconds) and SF = Scale factor. 

Jitter Jitter tracks the variation in the output throughput from the expected output 
average throughput. 

Resource Utilization 
(CPU%, Memory%, etc.) 

Resource Utilization is measured typically by the CPU, Memory, Disk Utilization and 
Network of the underlying operating system when executing the specified query. 
Measuring and analyzing these parameters across all cluster nodes helps to identify 
potential bottlenecks and perform system optimizations. 

Price/Performance $/QphDS@SF where $ = total operating costs including the price of the System 
under Test, QphDS = Query per hour for decision support, and SF = Scale factor. 
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6.2.4 Experiment design 

The goal is to measure the execution time of each function call and find out the bottleneck 
function call using the five different input datasets. Figure 17 is a data pipeline that intuitively 
visualizes how data flow when the K-Means model is created.  

 

 

Figure 17: Dataflow of the K-Means modeling 

 

The entire pipeline consists of three Spark functions at the block (1), (2), (3), and one Spark 
MLlib function at the block (4). The last block (4) can be further broken down into five sub-
function calls as shown at the block (4-1), (4-2), (4-3), (4-4), and (4-5). A loop is executed 
between (4-1) to (4-5) until it merges with the threshold criterion.  

The role of each function is described as follows: 

(1) textFile(): reads the raw data from HDFS and converts to the RDD format 
(2) map(): breaks the raw data into a line by line structure 
(3) map(): extracts only relevant fields namely, latitude and longitude 
(4) train(): creates the K-Means model over the data 

(4-1) takeSamples(): selects random K centroids from the input data 
(4-2) map(): finds the nearest centroid for every data sample 
(4-3) reduceByKey(): merges the number of data samples for each key (K centroids)  
(4-4) map(): find a new centroid by averaging each point of a cluster 
(4-5) distanceSquared(): calculates the squared distances between two points (the new 
centroid and data sample)   

The experiment is designed to run three times and averaged by three. The hyper-parameters 
are set as follows: the number of centroids (K == 8), the threshold distance at the iterations 
(convergeDistance == 0), and the max number of iterations (maxNumIteration == 10). 
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6.2.5 Benchmark results 

The average of three experiment execution times is shown in Table 12. Except for the first 
column (Size) and 10th columns (Iterations), the unit is seconds. The last column of Total is the 
total execution time. It is the sum of the first four functions added to the sum of rest functions 
multiplied by the number of iterations, namely: 

𝑇𝑜𝑡𝑎𝑙 =  {(1) + (2) + (3) + (4_1)}  + {(4_2) + (4_3) + (4_4) + (4_5)} ∗ 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

 

Table 12: Execution time in seconds 

Size 
(MB) 

(1) 
Load 

(2) 
Map1 

(3) 
Map2 

(4-1) 
take 

Sample() 

(4-2) 
map() 

(4-3) 
reduce 
ByKey() 

(4-4) 
map() 

(4-5) 
distance 

Squared() 

Iterations Total 

54.0 1.38 0.00 0.00 32.321 0.000 0.109 10.933 0.000 3 66.827 
84.7 1.79 0.00 0.00 37.701 0.000 0.062 16.609 0.000 8 172.859 

120.7 1.16 0.00 0.00 43.698 0.000 0.057 23.315 0.000 5 161.718 
158.0 1.14 0.00 0.00 53.161 0.000 0.047 33.502 0.000 4 188.497 
204.3 1.13 0.00 0.00 60.661 0.000 0.047 42.226 0.000 4 230.883 

 

It is noteworthy to mention that the total execution time is not linearly increasing unlike the 
size of the input data. In particular, the results in the red box caught our attention. It is against 
common sense because the total execution time of the smaller dataset (84.7 MB) is bigger than 
the larger dataset (120.7 MB). The answer for this phenomenon is due to the number of 
Iterations which is determined based on the randomness of the K-Means clustering algorithm. 
Thus, we recommend to one to lower the number of hyper-parameter of maxNumIteration. 
With this setting, the level of randomness will be decreased and more stable IT service can be 
provided.  

6.3 Recommendations 

This chapter provided a practical guideline on how one can turn an application to a benchmark. 
The entire procedure is divided into two parts: (1) setting up a custom application and then (2) 
validate that it satisfies all the requirements. The biggest advantage of developing customized 
application benchmark is that it can address the specific domain requirements including the 
data type and size, best methodologies, architectures and Big Data technologies for this 
particular scenario. Additionally, one can define custom metrics to monitor particular functions 
of the implemented components. It is also much easier to deploy, use and extend a software 
that was developed internally by your team.  

In terms of outcomes, based on the results, you will be able to take technical and business 
decisions about the platform very accurately. However, there are also potential pitfalls. It takes 
resources and specialized knowledge to develop a customized benchmark. In addition, it is not 
an industry standard and as such has limited marketing role for a software product or service 
positioning against competitors. 
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7 Conclusions 

The use of Big Data has the potential to change dramatically the way transportation is done. 
The technologies needed to store, manage and analyse Big Data are complex and require high 
skills and expertise. Vendors, especially in the USA, are leading the game, by offering various 
software data platforms, which integrate both the storage and management of data together 
with advanced data analytics. To choose the right technology for the domain at hand is a 
difficult task which requires a high knowledge of the software technologies provided and the 
requirements of the application.  

This document offers the reader a technical insight into existing Big Data technologies at various 
levels: software management, data platform, and application. In order to evaluate which 
specific software components in the Big Data stack are more suitable for transport applications, 
with high volume and high-velocity requirements, a benchmarking approach is presented.  

This report introduces general Big Data benchmarks (such as TPC, SPEC, STAC), and streaming 
benchmarks (such as HiBench, YSB, StreamBench). Few data benchmarks currently exist that 
are focused on Transport. We recommend in this report to define custom application 
benchmarks for transportation using the best of the breed Big Data software technologies 
available. In the report, we have shown an example of such a custom application benchmark, a 
data-driven application for road traffic evaluation. 

The future of data analytics in transportation has many applications and opportunities.  

The main challenge is using significantly improved technologies and methods to gather and 
understand the data in order for business decisions to be informed by better insights. 
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